Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS One ; 7(7): e41435, 2012.
Article in English | MEDLINE | ID: mdl-22859985

ABSTRACT

INTRODUCTION: Following the 2009 influenza A/H1N1 (pH1N1) pandemic, both seasonal and pH1N1 viruses circulated in the US during the 2010-2011 influenza season; influenza vaccine effectiveness (VE) may vary between live attenuated (LAIV) and trivalent inactivated (TIV) vaccines as well as by virus subtype. MATERIALS AND METHODS: Vaccine type and virus subtype-specific VE were determined for US military active component personnel for the period of September 1, 2010 through April 30, 2011. Laboratory-confirmed influenza-related medical encounters were compared to matched individuals with a non-respiratory illness (healthy controls), and unmatched individuals who experienced a non-influenza respiratory illness (test-negative controls). Odds ratios (OR) and VE estimates were calculated overall, by vaccine type and influenza subtype. RESULTS: A total of 603 influenza cases were identified. Overall VE was relatively low and similar regardless of whether healthy controls (VE = 26%, 95% CI: -1 to 45) or test-negative controls (VE = 29%, 95% CI: -6 to 53) were used as comparison groups. Using test-negative controls, vaccine type-specific VE was found to be higher for TIV (53%, 95% CI: 25 to 71) than for LAIV (VE = -13%, 95% CI: -77 to 27). Influenza subtype-specific analyses revealed moderate protection against A/H3 (VE = 58%, 95% CI: 21 to 78), but not against A/H1 (VE = -38%, 95% CI: -211 to 39) or B (VE = 34%, 95% CI: -122 to 80). CONCLUSION: Overall, a low level of protection against clinically-apparent, laboratory-confirmed, influenza was found for the 2010-11 seasonal influenza vaccines. TIV immunization was associated with higher protection than LAIV, however, no protection against A/H1 was noted, despite inclusion of a pandemic influenza strain as a vaccine component for two consecutive years. Vaccine virus mismatch or lower immunogenicity may have contributed to these findings and deserve further examination in controlled studies. Continued assessment of VE in military personnel is essential in order to better inform vaccination policy decisions.


Subject(s)
Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Military Personnel , Adult , Case-Control Studies , Female , Humans , Influenza, Human/immunology , Influenza, Human/virology , Male , Mass Vaccination , United States , Vaccines, Attenuated/administration & dosage , Vaccines, Inactivated/administration & dosage , Young Adult
2.
Biosecur Bioterror ; 9(4): 408-12, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22074350

ABSTRACT

The World Health Organization's revised International Health Regulations (IHR (2005)) call for member state compliance by mid-2012. Variation in disease surveillance and core public health capacities will affect each member state's ability to meet this deadline. We report on topics presented at the preconference workshop, "The Interaction of Disease Surveillance and the International Health Regulations," held at the 2010 International Society for Disease Surveillance conference in Park City, Utah. Presenters were from the Pan American Health Organization (PAHO), the U.S. Department of Health and Human Services (HHS), the Centers for Disease Control and Prevention (CDC), the Armed Forces Health Surveillance Center, U.S. Naval Research Unit Six, the Philippines' National Epidemiologic Center, and the French armed forces. The topics addressed were: an overview of the revised IHRs; disease surveillance systems implemented in Peru, the Philippines, and by the French armed forces; the capacity building efforts of the CDC; partnerships and contributions to IHR compliance from HHS; and the application of the IHRs to special populations. Results from the meeting evaluation indicate that many participants found the information useful in better understanding current efforts of the U.S. government and international organizations, areas for collaboration, and how the IHRs apply to their countries' public health systems. Topics to address at future workshops include progress and challenges to IHR implementation across all member states and additional examples of how disease surveillance supports the IHRs in resource-constrained countries. The preconference workshop provided the opportunity to convene public health experts from all regions of the world. Stronger collaborations and support to better detect and respond to public health events through building sustainable disease surveillance systems will not only help member states to meet IHR compliance by 2012, but will also improve pandemic preparedness and global health security.


Subject(s)
International Cooperation , Population Surveillance/methods , Public Health , Disaster Planning/organization & administration , Disease Outbreaks/prevention & control , Federal Government , Global Health , Government Regulation , Guideline Adherence , Guidelines as Topic , Health Policy , Humans , Program Development , Utah , World Health Organization
3.
BMC Public Health ; 11 Suppl 2: S2, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21388562

ABSTRACT

The Armed Forces Health Surveillance Center, Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) has the mission of performing surveillance for emerging infectious diseases that could affect the United States (U.S.) military. This mission is accomplished by orchestrating a global portfolio of surveillance projects, capacity-building efforts, outbreak investigations and training exercises. In 2009, this portfolio involved 39 funded partners, impacting 92 countries. This article discusses the current biosurveillance landscape, programmatic details of organization and implementation, and key contributions to force health protection and global public health in 2009.


Subject(s)
Communicable Disease Control , Disease Outbreaks/prevention & control , Military Medicine , Public Health , Sentinel Surveillance , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Government Agencies , Humans , Military Medicine/organization & administration , Military Personnel , Population Surveillance , Public Health Administration , United States , United States Department of Defense
4.
BMC Public Health ; 11 Suppl 2: S3, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21388563

ABSTRACT

A cornerstone of effective disease surveillance programs comprises the early identification of infectious threats and the subsequent rapid response to prevent further spread. Effectively identifying, tracking and responding to these threats is often difficult and requires international cooperation due to the rapidity with which diseases cross national borders and spread throughout the global community as a result of travel and migration by humans and animals. From Oct.1, 2008 to Sept. 30, 2009, the United States Department of Defense's (DoD) Armed Forces Health Surveillance Center Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) identified 76 outbreaks in 53 countries. Emerging infectious disease outbreaks were identified by the global network and included a wide spectrum of support activities in collaboration with host country partners, several of which were in direct support of the World Health Organization's (WHO) International Health Regulations (IHR) (2005). The network also supported military forces around the world affected by the novel influenza A/H1N1 pandemic of 2009. With IHR (2005) as the guiding framework for action, the AFHSC-GEIS network of international partners and overseas research laboratories continues to develop into a far-reaching system for identifying, analyzing and responding to emerging disease threats.


Subject(s)
Communicable Disease Control/methods , Disease Outbreaks/prevention & control , Global Health , Sentinel Surveillance , Communicable Disease Control/organization & administration , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Government Agencies , Humans , International Cooperation , Military Personnel , United States , World Health Organization
5.
BMC Public Health ; 11 Suppl 2: S4, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21388564

ABSTRACT

Capacity-building initiatives related to public health are defined as developing laboratory infrastructure, strengthening host-country disease surveillance initiatives, transferring technical expertise and training personnel. These initiatives represented a major piece of the Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) contributions to worldwide emerging infectious disease (EID) surveillance and response. Capacity-building initiatives were undertaken with over 80 local and regional Ministries of Health, Agriculture and Defense, as well as other government entities and institutions worldwide. The efforts supported at least 52 national influenza centers and other country-specific influenza, regional and U.S.-based EID reference laboratories (44 civilian, eight military) in 46 countries worldwide. Equally important, reference testing, laboratory infrastructure and equipment support was provided to over 500 field sites in 74 countries worldwide from October 2008 to September 2009. These activities allowed countries to better meet the milestones of implementation of the 2005 International Health Regulations and complemented many initiatives undertaken by other U.S. government agencies, such as the U.S. Department of Health and Human Services, the U.S. Agency for International Development and the U.S. Department of State.


Subject(s)
Influenza, Human/epidemiology , Military Personnel , Public Health , Respiratory Tract Infections/epidemiology , Sentinel Surveillance , Global Health , Government Agencies , Humans , International Cooperation , Laboratories , United States
6.
BMC Public Health ; 11 Suppl 2: S5, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21388565

ABSTRACT

Training is a key component of building capacity for public health surveillance and response, but has often been difficult to quantify. During fiscal 2009, the Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) supported 18 partner organizations in conducting 123 training initiatives in 40 countries for 3,130 U.S. military, civilian and host-country personnel. The training assisted with supporting compliance with International Health Regulations, IHR (2005). Training activities in pandemic preparedness, outbreak investigation and response, emerging infectious disease (EID) surveillance and pathogen diagnostic techniques were expanded significantly. By engaging local health and other government officials and civilian institutions, the U.S. military's role as a key stakeholder in global public health has been strengthened and has contributed to EID-related surveillance, research and capacity-building initiatives specified elsewhere in this issue. Public health and emerging infections surveillance training accomplished by AFHSC-GEIS and its Department of Defense (DoD) partners during fiscal 2009 will be tabulated and described.


Subject(s)
Communicable Disease Control/methods , Disease Outbreaks/prevention & control , Education, Public Health Professional , Global Health , Sentinel Surveillance , Communicable Diseases/diagnosis , Communicable Diseases/epidemiology , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Humans , Military Personnel/education , United States , United States Department of Defense
7.
BMC Public Health ; 11 Suppl 2: S6, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21388566

ABSTRACT

The Armed Forces Health Surveillance Center's Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) supports and oversees surveillance for emerging infectious diseases, including respiratory diseases, of importance to the U.S. Department of Defense (DoD). AFHSC-GEIS accomplishes this mission by providing funding and oversight to a global network of partners for respiratory disease surveillance. This report details the system's surveillance activities during 2009, with a focus on efforts in responding to the novel H1N1 Influenza A (A/H1N1) pandemic and contributions to global public health. Active surveillance networks established by AFHSC-GEIS partners resulted in the initial detection of novel A/H1N1 influenza in the U.S. and several other countries, and viruses isolated from these activities were used as seed strains for the 2009 pandemic influenza vaccine. Partners also provided diagnostic laboratory training and capacity building to host nations to assist with the novel A/H1N1 pandemic global response, adapted a Food and Drug Administration-approved assay for use on a ruggedized polymerase chain reaction platform for diagnosing novel A/H1N1 in remote settings, and provided estimates of seasonal vaccine effectiveness against novel A/H1N1 illness. Regular reporting of the system's worldwide surveillance findings to the global public health community enabled leaders to make informed decisions on disease mitigation measures and controls for the 2009 A/H1N1 influenza pandemic. AFHSC-GEIS's support of a global network contributes to DoD's force health protection, while supporting global public health.


Subject(s)
Global Health , Influenza A Virus, H1N1 Subtype , Influenza, Human/epidemiology , Respiratory Tract Diseases/epidemiology , Sentinel Surveillance , Humans , Influenza, Human/prevention & control , Military Medicine , Pandemics , Respiratory Tract Diseases/prevention & control , United States/epidemiology , United States Department of Defense
8.
BMC Public Health ; 10 Suppl 1: S4, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-21143826

ABSTRACT

A cornerstone of effective global health surveillance programs is the ability to build systems that identify, track and respond to public health threats in a timely manner. These functions are often difficult and require international cooperation given the rapidity with which diseases cross national borders and spread throughout the global community as a result of travel and migration by both humans and animals. As part of the U.S. Armed Forces Health Surveillance Center (AFHSC), the Department of Defense's (DoD) Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) has developed a global network of surveillance sites over the past decade that engages in a wide spectrum of support activities in collaboration with host country partners. Many of these activities are in direct support of International Health Regulations (IHR[2005]). The network also supports host country military forces around the world, which are equally affected by these threats and are often in a unique position to respond in areas of conflict or during complex emergencies. With IHR(2005) as the guiding framework for action, the AFHSC-GEIS network of international partners and overseas research laboratories continues to develop into a far-reaching system for identifying, analyzing and responding to emerging disease threats.


Subject(s)
Capacity Building , Health Policy/legislation & jurisprudence , International Cooperation , Population Surveillance , United States Department of Defense , World Health Organization , Communicable Disease Control , Humans , Partnership Practice , Social Control, Formal , Travel , Trust , United States
10.
PLoS One ; 5(5): e10722, 2010 May 19.
Article in English | MEDLINE | ID: mdl-20502705

ABSTRACT

INTRODUCTION: A novel A/H1N1 virus is the cause of the present influenza pandemic; vaccination is a key countermeasure, however, few data assessing prior seasonal vaccine effectiveness (VE) against the pandemic strain of H1N1 (pH1N1) virus are available. MATERIALS AND METHODS: Surveillance of influenza-related medical encounter data of active duty military service members stationed in the United States during the period of April-October 2009 with comparison of pH1N1-confirmed cases and location and date-matched controls. Crude odds ratios (OR) and VE estimates for immunized versus non-immunized were calculated as well as adjusted OR (AOR) controlling for sex, age group, and history of prior influenza vaccination. Separate stratified VE analyses by vaccine type (trivalent inactivated [TIV] or live attenuated [LAIV]), age groups and hospitalization status were also performed. For the period of April 20 to October 15, 2009, a total of 1,205 cases of pH1N1-confirmed cases were reported, 966 (80%) among males and over one-half (58%) under 25 years of age. Overall VE for service members was found to be 45% (95% CI, 33 to 55%). Immunization with prior season's TIV (VE = 44%, 95% CI, 32 to 54%) as well as LAIV (VE = 24%, 95% CI, 6 to 38%) were both found to be associated with protection. Of significance, VE against a severe disease outcome was higher (VE = 62%, 95% CI, 14 to 84%) than against milder outcomes (VE = 42%, 95% CI, 29 to 53%). CONCLUSION: A moderate association with protection against clinically apparent, laboratory-confirmed Pandemic (H1N1) 2009-associated illness was found for immunization with either TIV or LAIV 2008-09 seasonal influenza vaccines. This association with protection was found to be especially apparent for severe disease as compared to milder outcome, as well as in the youngest and older populations. Prior vaccination with seasonal influenza vaccines in 2004-08 was also independently associated with protection.


Subject(s)
Disease Outbreaks/prevention & control , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Military Personnel , Seasons , Adult , Age Distribution , Case-Control Studies , Female , Hospitalization , Humans , Male , Odds Ratio , United States/epidemiology , Young Adult
11.
Influenza Other Respir Viruses ; 4(3): 155-61, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20409212

ABSTRACT

The US Department of Defense influenza surveillance system now spans nearly 500 sites in 75 countries, including active duty US military and dependent populations as well as host-country civilian and military personnel. This system represents a major part of the US Government's contributions to the World Health Organization's Global Influenza Surveillance Network and addresses Presidential Directive NSTC-7 to expand global surveillance, training, research and response to emerging infectious disease threats. Since 2006, the system has expanded significantly in response to rising pandemic influenza concerns. The expanded system has played a critical role in the detection and monitoring of ongoing H5N1 outbreaks worldwide as well as in the initial detection of, and response to, the current (H1N1) 2009 influenza pandemic. This article describes the system, details its contributions and the critical gaps that it is filling, and discusses future plans.


Subject(s)
Influenza, Human/epidemiology , Respiratory Tract Infections/epidemiology , Sentinel Surveillance , Humans , Military Personnel , United States
12.
Emerg Infect Dis ; 16(5): 769-75, 2010 May.
Article in English | MEDLINE | ID: mdl-20409365

ABSTRACT

In mid-May 2007, a respiratory disease outbreak associated with adenovirus, serotype B14 (Ad14), was recognized at a large military basic training facility in Texas. The affected population was highly mobile; after the 6-week basic training course, trainees immediately dispersed to advanced training sites worldwide. Accordingly, enhanced surveillance and control efforts were instituted at sites receiving the most trainees. Specimens from patients with pneumonia or febrile respiratory illness were tested for respiratory pathogens by using cultures and reverse transcription-PCR. During May through October 2007, a total of 959 specimens were collected from 21 sites; 43.1% were adenovirus positive; the Ad14 serotype accounted for 95.3% of adenovirus isolates. Ad14 was identified at 8 sites in California, Florida, Mississippi, Texas, and South Korea. Ad14 spread readily to secondary sites after the initial outbreak. Military and civilian planners must consider how best to control the spread of infectious respiratory diseases in highly mobile populations traveling between diverse geographic locations.


Subject(s)
Adenovirus Infections, Human/transmission , Adenoviruses, Human/isolation & purification , Military Personnel , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Adolescent , Adult , Disease Outbreaks , Female , Geography , Humans , Male , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Population Surveillance , Republic of Korea/epidemiology , Time Factors , Travel , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...