Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Struct Mol Biol ; 25(3): 270-278, 2018 03.
Article in English | MEDLINE | ID: mdl-29483648

ABSTRACT

Peptides folded through interwoven disulfides display extreme biochemical properties and unique medicinal potential. However, their exploitation has been hampered by the limited amounts isolatable from natural sources and the expense of chemical synthesis. We developed reliable biological methods for high-throughput expression, screening and large-scale production of these peptides: 46 were successfully produced in multimilligram quantities, and >600 more were deemed expressible through stringent screening criteria. Many showed extreme resistance to temperature, proteolysis and/or reduction, and all displayed inhibitory activity against at least 1 of 20 ion channels tested, thus confirming their biological functionality. Crystal structures of 12 confirmed proper cystine topology and the utility of crystallography to study these molecules but also highlighted the need for rational classification. Previous categorization attempts have focused on limited subsets featuring distinct motifs. Here we present a global definition, classification and analysis of >700 structures of cystine-dense peptides, providing a unifying framework for these molecules.


Subject(s)
Cystine/chemistry , Peptides/chemistry , Amino Acid Sequence , Crystallography, X-Ray , HEK293 Cells , Humans , Ion Channels/antagonists & inhibitors , Models, Molecular , Peptide Biosynthesis , Peptides/classification , Peptides/pharmacology
2.
Nature ; 538(7625): 329-335, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27626386

ABSTRACT

Naturally occurring, pharmacologically active peptides constrained with covalent crosslinks generally have shapes that have evolved to fit precisely into binding pockets on their targets. Such peptides can have excellent pharmaceutical properties, combining the stability and tissue penetration of small-molecule drugs with the specificity of much larger protein therapeutics. The ability to design constrained peptides with precisely specified tertiary structures would enable the design of shape-complementary inhibitors of arbitrary targets. Here we describe the development of computational methods for accurate de novo design of conformationally restricted peptides, and the use of these methods to design 18-47 residue, disulfide-crosslinked peptides, a subset of which are heterochiral and/or N-C backbone-cyclized. Both genetically encodable and non-canonical peptides are exceptionally stable to thermal and chemical denaturation, and 12 experimentally determined X-ray and NMR structures are nearly identical to the computational design models. The computational design methods and stable scaffolds presented here provide the basis for development of a new generation of peptide-based drugs.


Subject(s)
Computer-Aided Design , Drug Design , Peptides/chemistry , Peptides/chemical synthesis , Protein Stability , Amino Acid Motifs , Crystallography, X-Ray , Cyclization , Disulfides/chemistry , Hot Temperature , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Peptides/genetics , Peptides, Cyclic/chemistry , Peptides, Cyclic/genetics , Protein Denaturation , Protein Structure, Secondary , Protein Structure, Tertiary , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...