Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Alzheimers Dement ; 20(2): 890-903, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37817376

ABSTRACT

INTRODUCTION: Chronic hypertension increases the risk of vascular cognitive impairment (VCI) by ∼60%; however, how hypertension affects the vasculature of the hippocampus remains unclear but could contribute to VCI. METHODS: Memory, hippocampal perfusion, and hippocampal arteriole (HA) function were investigated in male Wistar rats or spontaneously hypertensive rats (SHR) in early (4 to 5 months old), mid (8 to 9 months old), or late adulthood (14 to 15 months old). SHR in late adulthood were chronically treated with captopril (angiotensin converting enzyme inhibitor) or apocynin (antioxidant) to investigate the mechanisms by which hypertension contributes to VCI. RESULTS: Impaired memory in SHR in late adulthood was associated with HA endothelial dysfunction, hyperconstriction, and ∼50% reduction in hippocampal blood flow. Captopril, but not apocynin, improved HA function, restored perfusion, and rescued memory function in aged SHR. DISCUSSION: Hippocampal vascular dysfunction contributes to hypertension-induced memory decline through angiotensin II signaling, highlighting the therapeutic potential of HAs in protecting neurocognitive health later in life. HIGHLIGHTS: Vascular dysfunction in the hippocampus contributes to vascular cognitive impairment. Memory declines with age during chronic hypertension. Angiotensin II causes endothelial dysfunction in the hippocampus in hypertension. Angiotensin II-mediated hippocampal arteriole dysfunction reduces blood flow. Vascular dysfunction in the hippocampus impairs perfusion and memory function.


Subject(s)
Cognitive Dysfunction , Hypertension , Rats , Male , Animals , Captopril/pharmacology , Captopril/therapeutic use , Angiotensin II/metabolism , Angiotensin II/pharmacology , Rats, Wistar , Hypertension/complications , Rats, Inbred SHR , Hippocampus/metabolism , Cognitive Dysfunction/complications , Blood Pressure
2.
Stroke ; 54(3): 673-685, 2023 03.
Article in English | MEDLINE | ID: mdl-36848422

ABSTRACT

The incidence of age-related dementia is increasing as the world population ages and due to lack of effective treatments for dementia. Vascular contributions to cognitive impairment and dementia are increasing as the prevalence of pathologies associated with cerebrovascular disease rise, including chronic hypertension, diabetes, and ischemic stroke. The hippocampus is a bilateral deep brain structure that is central to learning, memory, and cognitive function and highly susceptible to hypoxic/ischemic injury. Compared with cortical brain regions such as the somatosensory cortex, less is known about the function of the hippocampal vasculature that is critical in maintaining neurocognitive health. This review focuses on the hippocampal vascular supply, presenting what is known about hippocampal hemodynamics and blood-brain barrier function during health and disease, and discusses evidence that supports its contribution to vascular cognitive impairment and dementia. Understanding vascular-mediated hippocampal injury that contributes to memory dysfunction during healthy aging and cerebrovascular disease is essential to develop effective treatments to slow cognitive decline. The hippocampus and its vasculature may represent one such therapeutic target to mitigate the dementia epidemic.


Subject(s)
Cognitive Dysfunction , Dementia , Vascular System Injuries , Humans , Cognition , Hippocampus
3.
Stroke ; 54(2): 354-363, 2023 02.
Article in English | MEDLINE | ID: mdl-36689585

ABSTRACT

BACKGROUND: Preeclampsia increases the incidence of maternal stroke, a devastating condition that is on the rise. We investigated stroke outcome in a model of experimental preeclampsia with and without treatment with clinically relevant doses of magnesium sulfate (experimental preeclampsia+MgSO4) compared to normal late-pregnant and nonpregnant rats. METHODS: Transient middle cerebral artery occlusion was used to induce focal stroke for either 1.5 or 3 hours. Infarct volume and hemorrhagic transformation were determined as measures of stroke outcome. Changes in core middle cerebral artery and collateral flow were measured by dual laser Doppler. The relationship between middle cerebral artery perfusion deficit and infarction was used as a measure of ischemic tolerance. Oxidative stress and endothelial dysfunction were measured by 3-nitrotyrosine and 8-isoprostane, in brain and serum, respectively. RESULTS: Late-pregnant animals had robust collateral flow and greater ischemic tolerance of brain tissue, whereas experimental preeclampsia had greater infarction that was related to poor collateral flow, endothelial dysfunction, and oxidative stress. Importantly, pregnancy appeared preventative of hemorrhagic transformation as it occurred only in nonpregnant animals. MgSO4 did not provide benefit to experimental preeclampsia animals for infarction. CONCLUSIONS: Stroke outcome was worse in a model of preeclampsia. As preeclampsia increases the risk of future stroke and cardiovascular disease, it is worth understanding the influence of preeclampsia on the material brain and factors that might potentiate injury both during the index pregnancy and years postpartum.


Subject(s)
Brain Ischemia , Pre-Eclampsia , Stroke , Humans , Pregnancy , Female , Rats , Animals , Brain , Infarction, Middle Cerebral Artery , Oxidative Stress , Cerebrovascular Circulation , Collateral Circulation
4.
Front Physiol ; 13: 924908, 2022.
Article in English | MEDLINE | ID: mdl-35733984

ABSTRACT

Preeclampsia is a hypertensive disorder of pregnancy that causes significant, long term cardiovascular effects for both the mother and offspring. A previous study demonstrated that middle cerebral arteries in offspring from an experimental rat model of preeclampsia were smaller, stiffer, and did not enlarge over the course of maturation, suggesting potential hemodynamic alterations in these offspring. Here we investigated the effect of experimental preeclampsia on cerebral blood flow autoregulation in juvenile and adult offspring that were born from normal pregnant or experimentally preeclamptic rats. Relative cerebral blood flow was measured using laser Doppler flowmetry, and cerebral blood flow autoregulation curves were constructed by raising blood pressure and controlled hemorrhage to lower blood pressure. Immunohistochemistry was used to assess middle cerebral artery size. Heart rate and blood pressure were measured in awake adult offspring using implanted radiotelemetry. Serum epinephrine was measured using enzyme-linked immunosorbent assay. Offspring from both groups showed maturation of cerebral blood flow autoregulation as offspring aged from juvenile to adulthood as demonstrated by the wider autoregulatory plateau. Experimental preeclampsia did not affect cerebral blood flow autoregulation in juvenile offspring, and it had no effect on cerebral blood flow autoregulation in adult offspring over the lower range of blood pressures. However, experimental preeclampsia caused a right shift in the upper range of blood pressures in adult offspring (compared to normal pregnant). Structurally, middle cerebral arteries from normal pregnant offspring demonstrated growth with aging, while middle cerebral arteries from experimentally preeclamptic offspring did not, and by adulthood normal pregnant offspring had significantly larger middle cerebral arteries. Middle cerebral artery lumen diameters did not significantly change as offspring aged. Serum epinephrine was elevated in juvenile experimentally preeclamptic offspring, and a greater degree of hemorrhage was required to induce hypotension, suggesting increased sympathetic activity. Finally, despite no evidence of increased sympathetic activity, adult experimentally preeclamptic offspring were found to have persistently higher heart rate. These results demonstrate a significant effect of experimental preeclampsia on the upper range of autoregulation and cerebrovascular structure in juvenile and adult offspring that could have an important influence on brain perfusion under conditions of hypo and/or hypertension.

5.
Front Physiol ; 13: 889918, 2022.
Article in English | MEDLINE | ID: mdl-35615682

ABSTRACT

Preeclampsia (PE) is a hypertensive disorder of pregnancy that is associated with memory impairment, cognitive decline and brain atrophy later in life in women at ages as young as early-to-mid 40 s. PE increases the risk of vascular dementia three-fold, however, long-lasting effects of PE on the vasculature of vulnerable brain regions involved in memory and cognition, such as the hippocampus, remain unknown. Here, we used a rat model of experimental PE (ePE) induced by maintaining rats on a 2% cholesterol diet beginning on day 7 of gestation to investigate hippocampal function later in life. Hippocampal-dependent memory and hippocampal arteriole (HA) function were determined in Sprague Dawley rats 5 months after either a healthy pregnancy or ePE (n = 8/group). Rats that had ePE were hypertensive and had impaired vasoreactivity of HAs to mediators involved in matching neuronal activity with local blood flow (i.e., neurovascular coupling). ePE rats also had impaired long-term memory, but not spatial memory. Thus, this model of ePE mimics some of the long-lasting cardiovascular and cognitive consequences that occur in women who previously had PE. These findings suggest endothelial and vascular smooth muscle dysfunction of HAs were present months after PE that could impair hippocampal neurovascular coupling. This represents a novel vascular mechanism by which PE causes early-onset dementia.

6.
Neurobiol Dis ; 168: 105717, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35385769

ABSTRACT

Chronic psychological stress affects brain regions involved in memory such as the hippocampus and accelerates age-related cognitive decline, including in Alzheimer's disease and vascular dementia. However, little is known about how chronic stress impacts hippocampal vascular function that is critically involved in maintaining neurocognitive health that could contribute to stress-related memory dysfunction. Here, we used a novel experimental rat model that mimics the neuroendocrine and cardiovascular aspects of chronic stress to determine how the neuroendocrine components of the stress response affect hippocampal function. We studied both male and female rats to determine potential sex differences in the susceptibility of the hippocampus and its vasculature to neuroendocrine stress-induced dysfunction. We show that activation of neuroendocrine stress pathways impaired the vasoreactivity of hippocampal arterioles to mediators involved in coupling neuronal activity with local blood flow that was associated with impaired memory function. Interestingly, we found more hippocampal arteriolar dysfunction and scarcer hippocampal microvasculature in male compared to female rats that was associated with greater memory impairment, suggesting the male sex may be at increased risk of neuroendocrine-derived hippocampal dysfunction during chronic stress. Overall, this study revealed the therapeutic potential of targeting hippocampal arterioles to prevent or slow memory decline in the setting of prolonged and/or unavoidable stress.


Subject(s)
Alzheimer Disease , Dementia, Vascular , Alzheimer Disease/metabolism , Animals , Dementia, Vascular/metabolism , Female , Hippocampus/metabolism , Male , Memory Disorders/etiology , Memory Disorders/metabolism , Neurons/metabolism , Rats
7.
J Cereb Blood Flow Metab ; 42(8): 1425-1436, 2022 08.
Article in English | MEDLINE | ID: mdl-35137612

ABSTRACT

Preeclampsia (PE) is a hypertensive disorder of pregnancy associated with neurovascular dysfunction, cognitive impairment and increased seizure susceptibility. Here, we sought to determine if treatment of experimental PE (ePE) rats with apocynin could prevent hippocampal arteriolar (HA) dysfunction and impaired seizure-induced hyperemia within the hippocampus, a brain region central to cognition and seizure generation. Isolated and pressurized HAs from Sprague Dawley rats that were normal pregnant (Preg; n = 8), ePE (n = 8) or ePE treated with apocynin for 2 weeks of gestation (ePE + apo; n = 8) were compared. Hippocampal blood flow (n = 6/group) was measured using hydrogen clearance before and during seizure. Aorta elastin was quantified using histochemistry. ePE was associated with HA dysfunction including reduced contraction to endothelin-1 and diminished dilation to the endothelium-dependent vasodilator NS309 that was prevented by apocynin. However, apocynin had no effect on ePE-induced impairment of dilation to the nitric oxide donor sodium nitroprusside, but increased myogenic tone and substantially increased HA distensibility. Seizure-induced hyperemia was impaired in ePE rats that was restored by apocynin. Aorta from ePE rats had reduced elastin content, suggesting large artery stiffness, that was unaffected by apocynin. Thus, while apocynin partially prevented HA dysfunction, its restoration of functional hyperemia may be protective of seizure-induced injury during eclampsia.


Subject(s)
Hyperemia , Pre-Eclampsia , Acetophenones , Animals , Arterioles/metabolism , Elastin/metabolism , Female , Hippocampus/metabolism , Humans , Pre-Eclampsia/drug therapy , Pregnancy , Rats , Rats, Sprague-Dawley , Seizures/metabolism , Vasodilation
8.
Mech Ageing Dev ; 196: 111491, 2021 06.
Article in English | MEDLINE | ID: mdl-33864898

ABSTRACT

Preeclampsia, a hypertensive disorder of pregnancy, complicates up to 10 % of all pregnancies and increases the risk for perinatal stroke in offspring. The mechanism of this increase is unknown, but may involve vascular dysfunction. The goal of this study was to evaluate the effect of experimental preeclampsia (ePE) on cerebrovascular function in offspring to eludciate a possible mechanism for this association. Dams were fed a high cholesterol diet beginning on day 7 of gestation to induce experimental preeclampsia. Middle cerebral arteries (MCA) and the Vein of Galen (VoG) were isolated from pups from ePE dams and compared to pups from normal pregnant (NP) dams at postnatal days 16, 23, and 30 and studied pressurized in an arteriograph chamber. Markers of inflammation and oxidative stress were measured in serum. Our results suggest altered structure and function in both MCA and VoG of ePE pups. We also found evidence of systemic inflammation and oxidative stress in ePE pups. These findings provide a potential link between preeclampsia and the occurrence or severity of perinatal stroke.


Subject(s)
Central Nervous System Vascular Malformations , Cerebral Veins , Middle Cerebral Artery , Pre-Eclampsia , Stroke , Animals , Animals, Newborn , Biomarkers/blood , Central Nervous System Vascular Malformations/blood , Central Nervous System Vascular Malformations/pathology , Central Nervous System Vascular Malformations/physiopathology , Cerebral Veins/pathology , Cerebral Veins/physiopathology , Disease Models, Animal , Female , Middle Cerebral Artery/pathology , Middle Cerebral Artery/physiopathology , Oxidative Stress , Pre-Eclampsia/metabolism , Pre-Eclampsia/physiopathology , Pregnancy , Rats , Risk Factors , Stroke/etiology , Stroke/physiopathology
9.
Prog Neurobiol ; 199: 101938, 2021 04.
Article in English | MEDLINE | ID: mdl-33130230

ABSTRACT

Preeclampsia is a hypertensive disorder of pregnancy that can involve dangerous neurological symptoms such as spontaneous seizures (eclampsia). Despite being diseases specific to the pregnant state, preeclampsia and eclampsia have long-lasting neurological consequences later in life, including changes in brain structure and cognitive decline at relatively young ages. However, the effects of preeclampsia on brain regions central to memory and cognition, such as the hippocampus, are unclear. Here, we present a case reporting the progressive and permanent cognitive decline in a woman that had eclamptic seizures in the absence of evidence of brain injury on MRI. We then use rat models of normal pregnancy and preeclampsia to investigate mechanisms by which eclampsia-like seizures may disrupt hippocampal function. We show that experimental preeclampsia causes delayed memory decline in rats and disruption of hippocampal neuroplasticity. Further, seizures in pregnancy and preeclampsia caused acute memory dysfunction and impaired neuroplasticity but did not cause acute neuronal cell death. Importantly, hippocampal dysfunction persisted 5 weeks postpartum, suggesting seizure-induced injury is long lasting and may be permanent. Our data provide the first evidence of a model of preeclampsia that may mimic the cognitive decline of formerly preeclamptic women, and that preeclampsia and eclampsia affect hippocampal network plasticity and impair memory.


Subject(s)
Dementia , Eclampsia , Pre-Eclampsia , Animals , Female , Hippocampus/diagnostic imaging , Humans , Pregnancy , Rats , Seizures
10.
Handb Clin Neurol ; 171: 85-96, 2020.
Article in English | MEDLINE | ID: mdl-32736760

ABSTRACT

The adaptation of the cerebral circulation to pregnancy is unique compared with other organs and circulatory systems, because the brain requires relatively constant blood flow and water and solute composition to maintain homeostasis. Thus, a major adaptation of the maternal cerebrovasculature to pregnancy is to maintain normalcy in the face of expanded plasma volume, increased cardiac output, and high levels of permeability factors. In this chapter, the effect of pregnancy on critical functions of the cerebral circulation is discussed, including changes occurring at the endothelium and blood-brain barrier (BBB), which protect the maternal brain from changes in BBB permeability. Further, pregnancy-induced changes in the structure and function of cerebral arteries, arterioles, and veins will be discussed as they relate to cerebral vascular resistance, hemodynamics, and cerebral blood flow autoregulation.


Subject(s)
Adaptation, Physiological , Cerebrovascular Circulation , Blood-Brain Barrier , Brain , Cerebral Arteries , Female , Humans , Pregnancy
11.
J Cereb Blood Flow Metab ; 40(4): 845-859, 2020 04.
Article in English | MEDLINE | ID: mdl-31088235

ABSTRACT

We investigated the effect of chronic hypertension on hippocampal arterioles (HippAs) and hippocampal perfusion as underlying mechanisms of memory impairment, and how large artery stiffness relates to HippA remodeling. Using male spontaneously hypertensive rats (SHR) and normotensive Wistar rats (n = 12/group), long-term (LTM) and spatial memory were tested using object recognition and spontaneous alternation tasks. Hippocampal blood flow was measured via hydrogen clearance basally and during hypercapnia. Reactivity of isolated and pressurized HippAs to pressure and pharmacological activators and inhibitors was investigated. To determine large artery stiffness, distensibility and elastin content were measured in thoracic aorta. SHR had impaired LTM and spatial memory associated with decreased basal blood flow (68 ± 12 mL/100 g/min) vs. Wistar (111 ± 28 mL/100 g/min, p < 0.01) that increased during hypercapnia similarly between groups. Compared to Wistar, HippAs from SHR had increased tone at 60 mmHg (58 ± 9% vs. 37 ± 7%, p < 0.01), and decreased reactivity to small- and intermediate-conductance calcium-activated potassium (SK/IK) channel activation. HippAs in both groups were unaffected by NOS inhibition. Decreased elastin content correlated with increased stiffness in aorta of SHR that was associated with increased stiffness and hypertrophic remodeling of HippAs. Hippocampal vascular dysfunction during hypertension could potentiate memory deficits and may provide a therapeutic target to limit vascular cognitive impairment.


Subject(s)
Cerebrovascular Circulation/physiology , Hippocampus/blood supply , Hypertension/physiopathology , Memory Disorders/etiology , Animals , Aorta, Thoracic/metabolism , Aorta, Thoracic/physiopathology , Arterioles , Behavior, Animal/physiology , Biomechanical Phenomena , Chronic Disease , Disease Models, Animal , Elastin/metabolism , Hypertension/complications , Male , Rats, Inbred SHR , Rats, Wistar
12.
J Vis Exp ; (154)2019 12 18.
Article in English | MEDLINE | ID: mdl-31904015

ABSTRACT

From subtle behavioral alterations to late-stage dementia, vascular cognitive impairment typically develops following cerebral ischemia. Stroke and cardiac arrest are remarkably sexually dimorphic diseases, and both induce cerebral ischemia. However, progress in understanding the vascular cognitive impairment, and then developing sex-specific treatments, has been partly limited by challenges in investigating the brain microcirculation from mouse models in functional studies. Here, we present an approach to examine the capillary-to-arteriole signaling in an ex vivo hippocampal capillary-parenchymal arteriole (HiCaPA) preparation from mouse brain. We describe how to isolate, cannulate, and pressurize the microcirculation to measure arteriolar diameter in response to capillary stimulation. We show which appropriate functional controls can be used to validate the HiCaPA preparation integrity and display typical results, including testing potassium as a neurovascular coupling agent and the effect of the recently characterized inhibitor of the Kir2 inward rectifying potassium channel family, ML133. Further, we compare the responses in preparations obtained from male and female mice. While these data reflect functional investigations, our approach can also be used in molecular biology, immunochemistry, and electrophysiology studies.


Subject(s)
Arterioles/physiology , Capillaries/physiology , Hippocampus/blood supply , Neurovascular Coupling/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Microcirculation/physiology
13.
Microvasc Res ; 119: 64-72, 2018 09.
Article in English | MEDLINE | ID: mdl-29705580

ABSTRACT

Preeclampsia (PE), a dangerous hypertensive complication of pregnancy, is associated with widespread maternal vascular dysfunction. However, the effect of PE on the cerebral vasculature that can lead to stroke and cognitive decline is not well understood. We hypothesized that function of cortical parenchymal arterioles (PAs) would be impaired during PE. Using a high cholesterol diet to induce experimental PE in rats (ePE), we studied the function and structure of isolated and pressurized PAs supplying frontoparietal white matter (WM) tracts and cortex and compared to normal pregnant (Preg) and nonpregnant (Nonpreg) Sprague Dawley rats (n = 8/group). Myogenic reactivity and tone were similar between groups; however, constriction to intermediate-conductance calcium-activated potassium (IK) channel inhibition was diminished and dilation to inward-rectifying K+ (KIR) channel activation was impaired in PAs from ePE rats, suggesting altered ion channel function. Conducted vasodilation was significantly delayed in response to 12 mM KCl, but not 10 µM adenosine, in PAs from ePE rats versus Preg and Nonpreg rats (940 ±â€¯300 ms vs. 70 ±â€¯50 ms and 370 ±â€¯90 ms; p < 0.05). Overall, dysfunction of PAs supplying frontoparietal WM and gray matter was present in ePE. If persistent these changes could potentiate neuronal injury that over time could contribute to WM lesions and early-onset cognitive decline.


Subject(s)
Arterioles/physiopathology , Basal Ganglia/blood supply , Cerebrovascular Circulation , Parenchymal Tissue/blood supply , Pre-Eclampsia/physiopathology , Vasoconstriction , Vasodilation , White Matter/blood supply , Animals , Arterioles/metabolism , Biomarkers/blood , Blood Pressure , Disease Models, Animal , Female , Inflammation Mediators/blood , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Oxidative Stress , Potassium Channels, Inwardly Rectifying/metabolism , Pre-Eclampsia/blood , Pregnancy , Rats, Sprague-Dawley , Vascular Remodeling
14.
Brain Behav Immun ; 67: 13-23, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28739514

ABSTRACT

Seizure-provoking factors circulate late in gestation during normal pregnancy, but do not readily gain access to the brain due to the protective nature of the blood-brain barrier. In particular, efflux transporters are powerful ATP-driven pumps that actively prevent unwanted compounds from entering the brain. We hypothesized that acute inhibition of efflux transporters at the blood-brain barrier would result in spontaneous seizures in pregnant rats. We further hypothesized that the blood-brain barrier protects the maternal brain from seizure by increasing expression and/or activity of p-glycoprotein (P-gp), a major efflux transporter. Main blood-brain barrier efflux transporters were inhibited in-vivo in nonpregnant (Nonpreg) and pregnant (Preg; d19) Sprague Dawley rats (n=8/group). Seizures were monitored in conscious animals for 8h via chronically implanted electroencephalography (EEG) electrodes in the hippocampus and motor cortex and time-synced video. P-gp activity was measured via a calcein accumulation assay in freshly isolated cortical and hippocampal capillaries from Preg (d20) and Nonpreg rats (n=8-16/group), to assess regional susceptibility to transporter inhibition. P-gp expression, capillary density, and microglial activation as a measure of neuroinflammation were quantified using immunohistochemistry (n=4-6/group). Efflux transporter inhibition elicited hippocampal seizures within 1h in 100% of Preg rats that was not associated with neuroinflammation or elevated tumor necrosis factor alpha (TNFα) or vascular endothelial growth factor (VEGF), but negatively correlated with levels of estradiol. Hippocampal seizures were considerably less prevalent in Nonpreg rats. However, behavioral seizures in the motor cortex developed of similar severity in both groups of rats, demonstrating regional heterogeneity in response to efflux transporter inhibition. Basal P-gp activity was similar between groups, however, exposure to serum from Preg rats significantly decreased P-gp activity in the hippocampus, but not cortex, compared to serum from Nonpreg rats (0.29±0.1units/s in Preg vs. 0.06±0.02units/s in Nonpreg rats; p<0.05) that was not associated with elevated TNFα or VEGF. Thus, pregnancy differentially increased the susceptibility of the hippocampus to seizures in response to blood-brain barrier efflux transporter inhibition that may be due to the inhibitory effect of circulating factors in pregnancy on P-gp activity in the hippocampus.


Subject(s)
Blood-Brain Barrier/metabolism , Pregnancy Complications/metabolism , Seizures/metabolism , Animals , Blood-Brain Barrier/physiopathology , Electroencephalography , Estradiol/metabolism , Female , Fluoresceins/analysis , Hippocampus/blood supply , Hippocampus/physiopathology , Motor Cortex/blood supply , Motor Cortex/physiopathology , Pregnancy , Rats, Sprague-Dawley
15.
J Cereb Blood Flow Metab ; 37(8): 2857-2869, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27815419

ABSTRACT

We investigated the effect of experimental preeclampsia on hyperemia during seizure in the hippocampus and vascular function and structure of hippocampal arterioles using Sprague Dawley rats (n = 14/group) that were nonpregnant, pregnant (d20), or had experimental preeclampsia (induced by a high cholesterol diet d7-20). Hyperemia was measured via hydrogen clearance basally and during pentylenetetrazol-induced seizure (40-130 mg/kg i.v.). Reactivity of isolated and pressurized hippocampal arterioles to KCl, nitric oxide synthase inhibition with NG-nitro-L-arginine methyl ester and the nitric oxide donor sodium nitroprusside were investigated. Capillary density was quantified via immunohistochemistry. Cerebral blood flow increased during seizure vs. baseline in pregnant (118 ± 14 vs. 87 ± 9 mL/100 g/min; p < 0.05) and nonpregnant rats (106 ± 9 vs. 82 ± 9 mL/100 g/min; p < 0.05) but was unchanged in preeclamptic rats (79 ± 16 vs. 91 ± 4 mL/100 g/min; p > 0.05), suggesting impaired seizure-induced hyperemia in preeclampsia. Hippocampal arterioles from preeclamptic rats had less basal tone, and dilated less to 15 mM KCl (9 ± 8%) vs. pregnant (61 ± 27%) and nonpregnant rats (20 ± 11%). L-NAME had no effect on hippocampal arterioles in any group, but dilation to sodium nitroprusside was similar. Structurally, hippocampal arterioles from preeclamptic rats underwent inward hypotrophic remodeling and capillary rarefaction. Impaired seizure-induced hyperemia, vascular dysfunction, and limited vasodilatory reserve of hippocampal arterioles could potentiate hippocampal injury in preeclampsia especially during eclampsia.


Subject(s)
Arterioles/pathology , CA3 Region, Hippocampal/blood supply , Cerebrovascular Circulation/physiology , Hyperemia/pathology , Pre-Eclampsia/pathology , Seizures/pathology , Animals , Arterioles/physiopathology , CA3 Region, Hippocampal/physiopathology , Female , Hyperemia/complications , Hyperemia/physiopathology , Pre-Eclampsia/physiopathology , Pregnancy , Rats, Sprague-Dawley , Seizures/complications , Seizures/physiopathology
16.
Physiology (Bethesda) ; 30(2): 139-47, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25729059

ABSTRACT

The adaptation of the brain and cerebral circulation to pregnancy are unique compared with other organs and circulatory systems, ultimately functioning to maintain brain homeostasis. In this review, the effect of pregnancy on critical functions of the cerebral circulation is discussed, including changes occurring at the endothelium and blood-brain barrier, and changes in the structure and function of cerebral arteries and arterioles, hemodynamics, and cerebral blood flow autoregulation.


Subject(s)
Brain/blood supply , Cerebral Arteries/physiology , Cerebrovascular Circulation , Hemodynamics , Animals , Arterioles/metabolism , Arterioles/physiology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiology , Cerebral Arteries/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Female , Homeostasis , Humans , Pregnancy , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...