Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Physiol Rep ; 10(12): e15352, 2022 06.
Article in English | MEDLINE | ID: mdl-35748049

ABSTRACT

Glutathione-S-transferases (GSTs) are a diverse group of phase II detoxification enzymes which primarily evoke tissue protection via glutathione conjugation to xenobiotics and reactive oxygen species. Given their cytoprotective properties, potential changes in GST expression during AKI has pathophysiologic relevance. Hence, we evaluated total GST activity, and the mRNA responses of nine cytosolic GST isotypes (GST alpha1, kappa1, mu1/5, omega1, pi1 sigma1, theta1, zeta1 mRNAs), in five diverse mouse models of AKI (glycerol, ischemia/reperfusion; maleate, cisplatin, endotoxemia). Excepting endotoxemia, each AKI model significantly reduced GST activity (~35%) during both the AKI "initiation" (0-4 h) and "maintenance" phases (18 or 72 h). During the AKI maintenance phase, increases in multiple GST mRNAs were observed. However, no improvement in GST activity resulted. Increased urinary GST excretion followed AKI induction. However, this could not explain the reduced renal GST activity given that it also fell in response to ex vivo renal ischemia (i.e., absent urinary excretion). GST alpha, a dominant proximal tubule GST isotype, manifested 5-10-fold protein increases following AKI, arguing against GST proteolysis as the reason for the GST activity declines. Free fatty acids (FFAs) and lysophospholipids, which markedly accumulate during AKI, are known to bind to, and suppress, GST activity. Supporting this concept, arachidonic acid addition to renal cortical protein extracts caused rapid GST activity reductions. Based on these results, we conclude that diverse forms of AKI significantly reduce GST activity. This occurs despite increased GST transcription/translation and independent of urinary GST excretion. Injury-induced generation of endogenous GST inhibitors, such as FFAs, appears to be a dominant cause.


Subject(s)
Acute Kidney Injury , Endotoxemia , Acute Kidney Injury/metabolism , Animals , Endotoxemia/complications , Glutathione/metabolism , Kidney/metabolism , Kidney Tubules, Proximal/metabolism , Mice
2.
Nephrol Dial Transplant ; 36(3): 465-474, 2021 02 20.
Article in English | MEDLINE | ID: mdl-33547792

ABSTRACT

BACKGROUND: Iron sucrose (FeS) administration induces a state of renal preconditioning, protecting against selected forms of acute kidney injury (AKI). Recent evidence suggests that recombinant hepcidin also mitigates acute renal damage. Hence the goals of this study were to determine whether a new proprietary FeS formulation ('RBT-3') can acutely activate the hepcidin (HAMP1) gene in humans, raising plasma and renal hepcidin concentrations; assess whether the kidney participates in this posited RBT-3-hepcidin generation response; test whether RBT-3 can mitigate a clinically relevant AKI model (experimental cisplatin toxicity) and explore whether mechanisms in addition to hepcidin generation are operative in RBT-3's cytoprotective effects. METHODS: Healthy human volunteers (n = 9) and subjects with Stages 3-4 CKD (n = 9) received 120, 240 or 360 mg of RBT-3 (intravenously over 2 h). Plasma and urine samples were collected and assayed for hepcidin levels (0-72 h post-RBT-3 injection). In complementary mouse experiments, RBT-3 effects on hepatic versus renal hepcidin (HAMP1) messenger RNA (mRNA) and protein levels were compared. RBT-3's impact on the mouse Nrf2 pathway and on experimental cisplatin nephrotoxicity was assessed. Direct effects of exogenous hepcidin on in vivo and in vitro (HK-2 cells) cisplatin toxicity were also tested. RESULTS: RBT-3 induced rapid, dose-dependent and comparable plasma hepcidin increases in both healthy volunteers and chronic kidney disease subjects (∼15 times baseline within 24 h). Human kidney hepcidin exposure was confirmed by 4-fold urinary hepcidin increases. RBT-3 up-regulated mouse hepcidin mRNA, but much more so in kidney (>25 times) versus liver (∼2 times). RBT-3 also activated kidney Nrf2 [increased Nrf2 nuclear binding; increased Nrf2-responsive gene mRNAs: heme oxygenase-1, sulfiredoxin-1, glutamate-cysteine ligase catalytic subunit and NAD(P)H quinone dehydrogenase 1]. RBT-3 preconditioning (18 h time lapse) markedly attenuated experimental cisplatin nephrotoxicity (∼50% blood urea nitrogen/creatinine decrements), in part by reducing renal cisplatin uptake by 40%. Exogenous hepcidin (without RBT-3) treatment conferred protection against mild in vivo (but not in vitro) cisplatin toxicity. CONCLUSIONS: RBT-3 acutely and dramatically up-regulates cytoprotective hepcidin production, increasing renal hepcidin levels. However, additional cytoprotective mechanisms are activated by RBT-3 (e.g. Nrf2 activation; reduced cisplatin uptake). Thus RBT-3-induced preconditioning likely confers renal resistance to cisplatin via an interplay of multiple cytoprotective activities.


Subject(s)
Cisplatin/toxicity , Drug Resistance/drug effects , Ferric Oxide, Saccharated/pharmacology , Gene Expression Regulation/drug effects , Hepcidins/metabolism , Kidney/metabolism , Liver/metabolism , Renal Insufficiency, Chronic/metabolism , Aged , Animals , Antineoplastic Agents/toxicity , Case-Control Studies , Female , Hepcidins/genetics , Humans , Kidney/drug effects , Liver/drug effects , Male , Mice , Middle Aged , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/pathology
3.
Physiol Rep ; 8(18): e14566, 2020 09.
Article in English | MEDLINE | ID: mdl-32940965

ABSTRACT

BACKGROUND: Tin protoporphyrin (SnPP), a heme oxygenase 1 (HO-1) inhibitor, triggers adaptive tissue responses that confer potent protection against acute renal- and extra-renal tissue injuries. This effect is mediated, in part, via SnPP-induced activation of the cytoprotective Nrf2 pathway. However, it remains unclear as to whether SnPP can also upregulate humoral cytokine defenses, either in healthy human subjects or in patients with CKD. If so, then systemically derived cytokines could contribute SnPP-induced tissue protection. METHODS: SnPP (90 mg IV) was administered over 2 hr to six healthy human volunteers (HVs) and 12 subjects with stage 3-4 CKD. Plasma samples were obtained from baseline upto 72 hr post injection. Two representative anti-inflammatory cytokines (IL-10, TGFß1), and a pro-inflammatory cytokine (TNF-α), were assayed. Because IL-6 has been shown to induce tissue preconditioning, its plasma concentrations were also assessed. In complementary mouse experiments, SnPP effects on renal, splenic, and hepatic IL-10, IL-6, TGFß1, and TNF-α production (as gauged by their mRNAs) were tested. Tissue HO-1 mRNA served as an Nrf2 activation marker. RESULTS: SnPP induced marked (~5-7x) increases in plasma IL-10 and IL-6 concentrations within 24-48 hr, and to equal degrees in HVs and CKD patients. SnPP modestly raised plasma TGFß1 without impacting plasma TNF-α levels. In mouse experiments, SnPP did not affect IL-6, IL-10, TNF-α, or TGFß1 mRNAs in kidney despite marked renal Nrf2 activation. Conversely, SnPP increased splenic IL-10 and hepatic IL-6/TGFß1 mRNA levels, suggesting these organs as sites of extra-renal cytokine generation. CONCLUSIONS: SnPP can trigger cytoprotective cytokine production, most likely in extra-renal tissues. With ready glomerular cytokine filtration, extra-renal/renal "organ cross talk" can result. Thus, humoral factors seemingly can contribute to SnPP's cytoprotective effects.


Subject(s)
Cytokines/blood , Enzyme Inhibitors/therapeutic use , Metalloporphyrins/therapeutic use , NF-E2-Related Factor 2/metabolism , Protoporphyrins/therapeutic use , Renal Insufficiency, Chronic/drug therapy , Aged , Animals , Cytokines/genetics , Cytokines/metabolism , Enzyme Inhibitors/pharmacology , Female , Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Male , Metalloporphyrins/pharmacology , Mice , Middle Aged , NF-E2-Related Factor 2/genetics , Protoporphyrins/pharmacology
4.
Clin J Am Soc Nephrol ; 15(5): 633-642, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32291269

ABSTRACT

BACKGROUND AND OBJECTIVES: Oxidative stress is a hallmark and mediator of CKD. Diminished antioxidant defenses are thought to be partly responsible. However, there is currently no way to prospectively assess antioxidant defenses in humans. Tin protoporphyrin (SnPP) induces mild, transient oxidant stress in mice, triggering increased expression of select antioxidant proteins (e.g., heme oxygenase 1 [HO-1], NAD[P]H dehydrogenase [quinone] 1 [NQO1], ferritin, p21). Hence, we tested the hypothesis that SnPP can also variably increase these proteins in humans and can thus serve as a pharmacologic "stress test" for gauging gene responsiveness and antioxidant reserves. DESIGN: , setting, participants, & measurementsA total of 18 healthy volunteers and 24 participants with stage 3 CKD (n=12; eGFR 30-59 ml/min per 1.73 m2) or stage 4 CKD (n=12; eGFR 15-29 ml/min per 1.73 m2) were injected once with SnPP (9, 27, or 90 mg). Plasma and/or urinary antioxidant proteins were measured at baseline and for up to 4 days post-SnPP dosing. Kidney safety was gauged by serial measurements of BUN, creatinine, eGFR, albuminuria, and four urinary AKI biomarkers (kidney injury molecule 1, neutrophil gelatinase-associated lipocalin, cystatin C, and N-acetyl glucosaminidase). RESULTS: Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (r=-0.85 to -0.95). All four proteins manifested statistically significant dose- and time-dependent elevations after SnPP injection. However, marked intersubject differences were observed. p21 responses to high-dose SnPP and HO-1 responses to low-dose SnPP were significantly suppressed in participants with CKD versus healthy volunteers. SnPP was well tolerated by all participants, and no evidence of nephrotoxicity was observed. CONCLUSIONS: SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.


Subject(s)
Kidney Function Tests , Metalloporphyrins/administration & dosage , Oxidative Stress , Protoporphyrins/administration & dosage , Renal Insufficiency, Chronic/diagnosis , Adult , Aged , Biomarkers/blood , Biomarkers/urine , Case-Control Studies , Cyclin-Dependent Kinase Inhibitor p21/blood , Cyclin-Dependent Kinase Inhibitor p21/urine , Female , Ferritins/blood , Ferritins/urine , Glomerular Filtration Rate , Heme Oxygenase-1/blood , Heme Oxygenase-1/urine , Humans , Infusions, Intravenous , Male , Middle Aged , NAD(P)H Dehydrogenase (Quinone)/blood , NAD(P)H Dehydrogenase (Quinone)/urine , Predictive Value of Tests , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/urine
5.
Am J Physiol Renal Physiol ; 316(4): F674-F681, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30698046

ABSTRACT

The cyclin kinase inhibitor p21 is acutely upregulated during acute kidney injury (AKI) and exerts cytoprotective effects. A proposed mechanism is oxidant stress-induced activation of p53, the dominant p21 transcription factor. Glycerol-induced rhabdomyolysis induces profound renal oxidant stress. Hence, we studied this AKI model to determine whether p53 activation corresponds with p21 gene induction and/or whether alternative mechanism(s) might be involved. CD-1 mice were subjected to glycerol-induced AKI. After 4 or 18 h, plasma, urinary, and renal cortical p21 protein and mRNA levels were assessed. Renal p53 activation was gauged by measurement of both total and activated (Ser15-phosphorylated) p53 and p53 mRNA levels. Glycerol evoked acute, progressive increases in renal cortical p21 mRNA and protein levels. Corresponding plasma (~25-fold) and urinary (~75-fold) p21 elevations were also observed. Renal cortical ratio of total to phosphorylated (Ser15) p53 rose three- to fourfold. However, the p53 inhibitor pifithrin-α failed to block glycerol-induced p21 gene induction, suggesting that an alternative p21 activator might also be at play. To this end, it was established that glycerol-induced AKI 1) dramatically increased plasma (~5-fold) and urinary (~75-fold) cortisol levels, 2) the glucocorticoid receptor antagonist mifepristone blocked glycerol-induced p21 mRNA and protein accumulation, and 3) dexamethasone or cortisol injections markedly increased p21 protein and mRNA in both normal and glycerol-treated mice, although no discernible p53 protein or mRNA increases were observed. We conclude that AKI-induced "systemic stress" markedly increases plasma and urinary cortisol, which can then activate renal p21 gene expression, at least in part, via a glucocorticoid receptor-dependent signaling pathway. Discernible renal cortical p53 increases are not required for this dexamethasone-mediated p21 response.


Subject(s)
Acute Kidney Injury/metabolism , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Glucocorticoids/metabolism , Signal Transduction , Acute Kidney Injury/chemically induced , Acute Kidney Injury/physiopathology , Animals , Benzothiazoles/therapeutic use , Dexamethasone/therapeutic use , Glycerol , Hormone Antagonists/therapeutic use , Hydrocortisone/blood , Hydrocortisone/therapeutic use , Hydrocortisone/urine , Kidney Cortex/metabolism , Male , Mice , Mifepristone/therapeutic use , Toluene/analogs & derivatives , Toluene/therapeutic use , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , Up-Regulation
6.
J Am Soc Nephrol ; 29(8): 2157-2167, 2018 08.
Article in English | MEDLINE | ID: mdl-29980651

ABSTRACT

BACKGROUND: Recent clinical data support the utility/superiority of a new AKI biomarker ("NephroCheck"), the arithmetic product of urinary TIMP × IGFBP7 concentrations. However, the pathophysiologic basis for its utility remains ill defined. METHODS: To clarify this issue, CD-1 mice were subjected to either nephrotoxic (glycerol, maleate) or ischemic AKI. Urinary TIMP2/IGFBP7 concentrations were determined at 4 and 18 hours postinjury and compared with urinary albumin levels. Gene transcription was assessed by measuring renal cortical and/or medullary TIMP2/IGFBP7 mRNAs (4 and 18 hours after AKI induction). For comparison, the mRNAs of three renal "stress" biomarkers (NGAL, heme oxygenase 1, and p21) were assessed. Renal cortical TIMP2/IGFBP7 protein was gauged by ELISA. Proximal tubule-specific TIMP2/IGFBP7 was assessed by immunohistochemistry. RESULTS: Each AKI model induced prompt (4 hours) and marked urinary TIMP2/IGFBP7 increases without an increase in renal cortical concentrations. Furthermore, TIMP2/IGFBP7 mRNAs remained at normal levels. Endotoxemia also failed to increase TIMP2/IGFBP7 mRNAs. In contrast, each AKI model provoked massive NGAL, HO-1, and p21 mRNA increases, confirming that a renal "stress response" had occurred. Urinary albumin rose up to 100-fold and strongly correlated (r=0.87-0.91) with urinary TIMP2/IGFBP7 concentrations. Immunohistochemistry showed progressive TIMP2/IGFBP7 losses from injured proximal tubule cells. Competitive inhibition of endocytic protein reabsorption in normal mice tripled urinary TIMP2/IGFBP7 levels, confirming this pathway's role in determining urinary excretion. CONCLUSIONS: AKI-induced urinary TIMP2/IGFBP7 elevations are not due to stress-induced gene transcription. Rather, increased filtration, decreased tubule reabsorption, and proximal tubule cell TIMP2/IGFBP7 urinary leakage seem to be the most likely mechanisms.


Subject(s)
Acute Kidney Injury/metabolism , Acute Kidney Injury/urine , Insulin-Like Growth Factor Binding Proteins/urine , Kidney Tubules, Proximal/metabolism , Tissue Inhibitor of Metalloproteinase-2/urine , Acute Kidney Injury/pathology , Animals , Biomarkers/urine , Biopsy, Needle , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay/methods , Immunohistochemistry , Insulin-Like Growth Factor Binding Proteins/metabolism , Male , Mice , Mice, Inbred Strains , Random Allocation , Sensitivity and Specificity
7.
Nephrol Dial Transplant ; 33(11): 1927-1941, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29522116

ABSTRACT

Background: P21, a cyclin kinase inhibitor, is upregulated by renal 'ischemic preconditioning' (IPC), and induces a 'cytoresistant' state. However, P21-induced cell cycle inhibition can also contribute to cellular senescence, a potential adverse renal event. Hence, this study assessed whether: (i) IPC-induced P21 upregulation is associated with subsequent renal senescence; and (ii) preconditioning can be established 'independent' of P21 induction and avoid a post-ischemic senescent state? Methods: CD-1 mice were subjected to either IPC (5-15 min) or to a recently proposed 'oxidant-induced preconditioning' (OIP) strategy (tin protoporphyrin-induced heme oxygenase inhibition +/- parental iron administration). P21 induction [messenger RNA (mRNA)/protein], cell proliferation (KI-67, phosphohistone H3 nuclear staining), kidney senescence (P16ink4a; P19Arf mRNAs; senescence-associated beta-galactosidase levels) and resistance to ischemic acute kidney injury were assessed. Results: IPC induced dramatic (10-25×) and persistent P21 activation and 'downstream' tubular senescence. Conversely, OIP did not upregulate P21, it increased, rather than decreased, cell proliferation markers, and it avoided a senescence state. OIP markedly suppressed ischemia-induced P21 up-regulation, it inhibited the development of post-ischemic senescence and it conferred near-complete protection against ischemic acute renal failure (ARF). To assess OIP's impact on a non-P21-dependent cytoprotective pathway, its ability to activate Nrf2, the so-called 'master regulator' of endogenous cell defenses, was assessed. Within 4 h, OIP activated each of three canonical Nrf2-regulated genes (NQO1, SRXN1, GCLC; 3- to 5-fold mRNA increases). Conversely, this gene activation pathway was absent in Nrf2-/- mice, confirming Nrf2 specificity. Nrf2-/- mice also did not develop significant OIP-mediated protection against ischemic ARF. Conclusions: OIP (i) activates the cytoprotective Nrf2, but not the P21, pathway; (ii) suppresses post-ischemic P21 induction and renal senescence; and (iii) confers marked protection against ischemic ARF. In sum, these findings suggest that OIP may be a clinically feasible approach for safely activating the Nrf2 pathway, and thereby confer protection against clinical renal injury.


Subject(s)
Acute Kidney Injury/prevention & control , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gene Expression Regulation/drug effects , Ischemic Preconditioning/methods , NF-E2-Related Factor 2/physiology , Oxidants/pharmacology , Animals , Cell Cycle Checkpoints/drug effects , Cyclin-Dependent Kinase Inhibitor p21/genetics , Heme Oxygenase (Decyclizing)/antagonists & inhibitors , Male , Mice , Mice, Knockout , Protoporphyrins/pharmacology
8.
Transl Res ; 186: 1-18, 2017 08.
Article in English | MEDLINE | ID: mdl-28586635

ABSTRACT

Tin protoporphyrin (SnPP), a heme oxygenase (HO) inhibitor, can paradoxically protect against diverse forms of acute kidney injury (AKI). This study sought potential underlying mechanisms. CD-1 mice received intravenous SnPP, followed 4-18 hours later by a variety of renal biochemical, histologic, and genomic assessments. Renal resistance to ischemic-reperfusion injury (IRI) was also sought. SnPP was rapidly taken up by kidney and was confined to proximal tubules. Transient suppression of renal heme synthesis (decreased δ aminolevulinic acid synthase expression), a 2.5-fold increase in "catalytic" Fe levels and oxidant stress resulted (decreased glutathione; increased malondialdehyde, and protein carbonyl content). Nrf2 nuclear translocation (∼2x Nrf2 increase; detected by enzyme-linked immunosorbent assay, Western blotting), with corresponding activation of ∼20 Nrf2-sensitive genes (RNA-Seq) were observed. By 18 hours after SnPP injection, marked protection against IRI emerged. This represented "preconditioning", not a direct SnPP effect, given that SnPP administered at the time of IRI exerted no protective effect. The importance of transient oxidant stress in SnPP "preconditioning" was exemplified by the following: (1) oxidant stress induced by a different mechanism (myoglobin injection) recapitulated SnPP's protective action; (2) GSH treatment blunted SnPP's protective influence; (3) SnPP raised cytoprotective heavy chain ferritin (Fhc), a response enhanced by exogenous Fe injection; and (4) SnCl2, a ∼35- to 50-fold HO-1 inducer (not inhibitor) evoked neither oxidant stress nor mitigated IRI (seemingly excluding HO-1 activity in SnPP's protective effect). SnPP specifically accumulates within proximal tubule cells; transient "catalytic" Fe overload and oxidative stress result; Nrf2-cytoprotective pathways are upregulated; and these changes help protect against ischemic AKI.


Subject(s)
Acute Kidney Injury/prevention & control , Ferric Compounds/pharmacology , Glucaric Acid/pharmacology , Metalloporphyrins/pharmacology , NF-E2-Related Factor 2/metabolism , Protoporphyrins/pharmacology , Animals , Ferric Compounds/administration & dosage , Ferric Oxide, Saccharated , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Glucaric Acid/administration & dosage , Male , Metalloporphyrins/administration & dosage , Mice , NF-E2-Related Factor 2/genetics , Oxidants , Protein Binding , Protoporphyrins/administration & dosage , Reperfusion Injury
9.
Am J Physiol Renal Physiol ; 311(3): F640-51, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27170684

ABSTRACT

α1-Microglobulin (A1M) is a low-molecular-weight heme-binding antioxidant protein that is readily filtered by the glomerulus and reabsorbed by proximal tubules. Given these properties, recombinant A1M (rA1M) has been proposed as a renal antioxidant and therapeutic agent. However, little direct evidence to support this hypothesis exists. Hence, we have sought "proof of concept" in this regard. Cultured proximal tubule (HK-2) cells or isolated mouse proximal tubule segments were challenged with a variety of prooxidant insults: 1) hemin, 2) myoglobin; 3) "catalytic" iron, 4) H2O2/Fenton reagents, 5) a Ca(2+) ionophore, 6) antimycin A, or 7) hypoxia (with or without rA1M treatment). HK-2 injury was gauged by the percent lactate dehydrogenase release and 4,5-(dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide uptake. In vivo protection was sought in rA1M-treated mice subjected to 1) graded myohemoglobinura (2, 4, 8, or 9 ml/kg glycerol injection), 2) purified myoglobinemia/uria, or 3) endotoxemia. In vivo injury was assessed by blood urea nitrogen, creatinine, and the expression of redox-sensitive genes (heme oxygenase-1, neutrophil gelatinase-associated lipocalin, and monocyte chemoattractant protein-1 mRNAs). Although rA1M totally blocked in vitro hemin toxicity, equimolar albumin (another heme binder) or 10% serum induced equal protection. rA1M failed to mitigate any nonhemin forms of either in vitro or in vivo injury. A1M appeared to be rapidly degraded within proximal tubules (by Western blot analysis). Surprisingly, rA1M exerted select injury-promoting effects (increased in vitro catalytic iron/antimycin toxicities and increased in vivo monocyte chemoattractant protein-1/neutrophil gelatinase-associated lipocalin mRNA expression after glycerol or endotoxin injection). We conclude that rA1M has questionable utility as a renal antioxidant/cytoprotective agent, particularly in the presence of larger amounts of competitive free heme (e.g., albumin) binders.


Subject(s)
Acute Kidney Injury/prevention & control , Alpha-Globulins/pharmacology , Antioxidants/pharmacology , Kidney Tubules, Proximal/drug effects , Oxidative Stress/drug effects , Recombinant Proteins/pharmacology , Acute Kidney Injury/metabolism , Animals , Antimycin A/pharmacology , Cell Line , Hemin/pharmacology , Humans , Hydrogen Peroxide/pharmacology , Iron/pharmacology , Kidney Tubules, Proximal/metabolism , Mice , Myoglobin/pharmacology , Protective Agents/pharmacology
10.
Kidney Int ; 90(1): 67-76, 2016 07.
Article in English | MEDLINE | ID: mdl-27165818

ABSTRACT

Tissue preconditioning, whereby various short-term stressors initiate organ resistance to subsequent injury, is well recognized. However, clinical preconditioning of the kidney for protection against acute kidney injury (AKI) has not been established. Here we tested whether a pro-oxidant agent, iron sucrose, combined with a protoporphyrin (Sn protoporphyrin), can induce preconditioning and protect against acute renal failure. Mice were pretreated with iron sucrose, protoporphyrin, cyanocobalamin, iron sucrose and protoporphyrin, or iron sucrose and cyanocobalamin. Eighteen hours later, ischemic, maleate, or glycerol models of AKI were induced, and its severity was assessed the following day (blood urea nitrogen, plasma creatinine concentrations; post-ischemic histology). Agent impact on cytoprotective gene expression (heme oxygenase 1, hepcidin, haptoglobin, hemopexin, α1-antitrypsin, α1-microglobulin, IL-10) was assessed as renal mRNA and protein levels. AKI-associated myocardial injury was gauged by plasma troponin I levels. Combination agent administration upregulated multiple cytoprotective genes and, unlike single agent administration, conferred marked protection against each tested model of acute renal failure. Heme oxygenase was shown to be a marked contributor to this cytoprotective effect. Preconditioning also blunted AKI-induced cardiac troponin release. Thus, iron sucrose and protoporphyrin administration can upregulate diverse cytoprotective genes and protect against acute renal failure. Associated cardiac protection implies potential relevance to both AKI and its associated adverse downstream effects.


Subject(s)
Acute Kidney Injury/prevention & control , Ferric Compounds/therapeutic use , Glucaric Acid/therapeutic use , Kidney/metabolism , Metalloporphyrins/therapeutic use , Protective Agents/therapeutic use , Protoporphyrins/therapeutic use , Acute Kidney Injury/blood , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Alpha-Globulins/metabolism , Animals , Blood Urea Nitrogen , Creatinine/blood , Disease Models, Animal , Drug Therapy, Combination , Ferric Oxide, Saccharated , Glycerol/toxicity , Haptoglobins/metabolism , Heme Oxygenase-1/metabolism , Hemopexin/metabolism , Hepcidins/metabolism , Interleukin-10/metabolism , Kidney/pathology , Male , Maleates/toxicity , Mice , RNA, Messenger/metabolism , Troponin C/blood , alpha 1-Antitrypsin/metabolism
11.
Nephron Clin Pract ; 127(1-4): 129-32, 2014.
Article in English | MEDLINE | ID: mdl-25343836

ABSTRACT

Pyruvate is a key intermediary in both aerobic and anaerobic energy metabolisms. In addition, a burgeoning body of experimental literature indicates that it can also dramatically impact oxidant, proinflammatory, and cytoprotective pathways. In sum, these actions can confer protection against diverse forms of tissue damage. However, the fate of pyruvate during the evolution of acute kidney injury (AKI) has remained ill defined. Recent experimental studies have indicated that following either ischemic or nephrotoxic renal injury, marked and sustained pyruvate depletion results. While multiple potential mechanisms for this pyruvate loss may be involved, experimental data suggest that a loss of lactate (a dominant pyruvate precursor) and enhanced gluconeogenesis (i.e. pyruvate utilization) are involved. The importance of pyruvate depletion for AKI pathogenesis is underscored by observations that pyruvate therapy can attenuate diverse forms of experimental AKI. This protection may stem from reductions in tissue inflammation, improved anti-inflammatory defenses, and an enhanced cellular energy metabolism. The pieces of information that give rise to these conclusions are discussed in this brief report.


Subject(s)
Acute Kidney Injury/etiology , Kidney Cortex/metabolism , Pyruvates/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Adenosine Triphosphate/metabolism , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cell Hypoxia , Decarboxylation , Disease Models, Animal , Energy Metabolism , Gluconeogenesis , Glycolysis , Humans , Hydrogen Peroxide/metabolism , Inflammation , Ischemia/metabolism , Ischemia/physiopathology , Kidney/blood supply , Lactates/metabolism , Oxidation-Reduction , Oxidative Stress , Rhabdomyolysis/complications
12.
Am J Physiol Renal Physiol ; 307(7): F856-68, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25080526

ABSTRACT

Hepatic ischemic-reperfusion injury (HIRI) is considered a risk factor for clinical acute kidney injury (AKI). However, HIRI's impact on renal tubular cell homeostasis and subsequent injury responses remain ill-defined. To explore this issue, 30-45 min of partial HIRI was induced in CD-1 mice. Sham-operated or normal mice served as controls. Renal changes and superimposed injury responses (glycerol-induced AKI; endotoxemia) were assessed 2-18 h later. HIRI induced mild azotemia (blood urea nitrogen ∼45 mg/dl) in the absence of renal histologic injury or proteinuria, implying a "prerenal" state. However, marked renal cortical, and isolated proximal tubule, cytoprotective "stress protein" gene induction (neutrophil gelatinase-associated lipocalin, heme oxygenase-1, hemopexin, hepcidin), and increased Toll-like receptor 4 (TLR4) expression resulted (protein/mRNA levels). Ischemia caused release of hepatic heme-based proteins (e.g., cytochrome c) into the circulation. This corresponded with renal cortical oxidant stress (malondialdehyde increases). That hepatic derived factors can evoke redox-sensitive "stress protein" induction was implied by the following: peritoneal dialysate from HIRI mice, soluble hepatic extract, or exogenous cytochrome c each induced the above stress protein(s) either in vivo or in cultured tubule cells. Functional significance of HIRI-induced renal "preconditioning" was indicated by the following: 1) HIRI conferred virtually complete morphologic protection against glycerol-induced AKI (in the absence of hyperbilirubinemia) and 2) HIRI-induced TLR4 upregulation led to a renal endotoxin hyperresponsive state (excess TNF-α/MCP-1 gene induction). In conclusion, HIRI can evoke "renal preconditioning," likely due, in part, to hepatic release of pro-oxidant factors (e.g., cytochrome c) into the systemic circulation. The resulting renal changes can impact subsequent AKI susceptibility and TLR4 pathway-mediated stress.


Subject(s)
Kidney Cortex/physiopathology , Liver Failure, Acute/physiopathology , Reperfusion Injury/physiopathology , Stress, Physiological , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Acute-Phase Proteins/metabolism , Animals , Cell Line , Chemokine CCL2/metabolism , Endotoxemia/metabolism , Heme Oxygenase-1/metabolism , Hemopexin/metabolism , Hepcidins/metabolism , Kidney/metabolism , Kidney/pathology , Kidney Cortex/metabolism , Kidney Cortex/pathology , Lipocalin-2 , Lipocalins/metabolism , Lipopolysaccharides , Liver Failure, Acute/complications , Liver Failure, Acute/pathology , Male , Membrane Proteins/metabolism , Mice , Oncogene Proteins/metabolism , Reperfusion Injury/complications , Reperfusion Injury/pathology , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
PLoS One ; 9(5): e98380, 2014.
Article in English | MEDLINE | ID: mdl-24848503

ABSTRACT

Alpha-1-antitrypsin (AAT) is a hepatic stress protein with protease inhibitor activity. Recent evidence indicates that ischemic or toxic injury can evoke selective changes within kidney that resemble a hepatic phenotype. Hence, we tested the following: i) Does acute kidney injury (AKI) up-regulate the normally renal silent AAT gene? ii) Does rapid urinary AAT excretion result? And iii) Can AAT's anti-protease/anti-neutrophil elastase (NE) activity protect injured proximal tubule cells? CD-1 mice were subjected to ischemic or nephrotoxic (glycerol, maleate, cisplatin) AKI. Renal functional and biochemical assessments were made 4-72 hrs later. Rapidly following injury, 5-10 fold renal cortical and isolated proximal tubule AAT mRNA and protein increases occurred. These were paralleled by rapid (>100 fold) increases in urinary AAT excretion. AKI also induced marked increases in renal cortical/isolated proximal tubule NE mRNA. However, sharp NE protein levels declines resulted, which strikingly correlated (r, -0.94) with rising AAT protein levels (reflecting NE complexing by AAT/destruction). NE addition to HK-2 cells evoked ∼95% cell death. AAT completely blocked this NE toxicity, as well as Fe induced oxidant HK-2 cell attack. Translational relevance of experimental AAT gene induction was indicated by ∼100-1000 fold urinary AAT increases in 22 AKI patients (matching urine NGAL increases). We conclude: i) AKI rapidly up-regulates the renal cortical/proximal tubule AAT gene; ii) NE gene induction also results; iii) AAT can confer cytoprotection, potentially by blocking/reducing cytotoxic NE accumulation; and iv) marked increases in urinary AAT excretion in AKI patients implies clinical relevance of the AKI- AAT induction pathway.


Subject(s)
Acute Kidney Injury/metabolism , alpha 1-Antitrypsin/genetics , Acute Kidney Injury/genetics , Acute Kidney Injury/urine , Acute-Phase Proteins/metabolism , Animals , Azotemia/metabolism , Cell Line , Cisplatin/chemistry , Glycerol/chemistry , Humans , Kidney/metabolism , Kidney Cortex/metabolism , Kidney Tubules/metabolism , Kidney Tubules, Proximal/metabolism , Leukocyte Elastase/metabolism , Male , Maleates/chemistry , Mice , Phenotype , Reperfusion Injury/metabolism , Up-Regulation , alpha 1-Antitrypsin/metabolism
14.
J Am Soc Nephrol ; 25(5): 998-1012, 2014 May.
Article in English | MEDLINE | ID: mdl-24385590

ABSTRACT

Pyruvate is a key intermediary in energy metabolism and can exert antioxidant and anti-inflammatory effects. However, the fate of pyruvate during AKI remains unknown. Here, we assessed renal cortical pyruvate and its major determinants (glycolysis, gluconeogenesis, pyruvate dehydrogenase [PDH], and H2O2 levels) in mice subjected to unilateral ischemia (15-60 minutes; 0-18 hours of vascular reflow) or glycerol-induced ARF. The fate of postischemic lactate, which can be converted back to pyruvate by lactate dehydrogenase, was also addressed. Ischemia and glycerol each induced persistent pyruvate depletion. During ischemia, decreasing pyruvate levels correlated with increasing lactate levels. During early reperfusion, pyruvate levels remained depressed, but lactate levels fell below control levels, likely as a result of rapid renal lactate efflux. During late reperfusion and glycerol-induced AKI, pyruvate depletion corresponded with increased gluconeogenesis (pyruvate consumption). This finding was underscored by observations that pyruvate injection increased renal cortical glucose content in AKI but not normal kidneys. AKI decreased PDH levels, potentially limiting pyruvate to acetyl CoA conversion. Notably, pyruvate therapy mitigated the severity of AKI. This renoprotection corresponded with increases in cytoprotective heme oxygenase 1 and IL-10 mRNAs, selective reductions in proinflammatory mRNAs (e.g., MCP-1 and TNF-α), and improved tissue ATP levels. Paradoxically, pyruvate increased cortical H2O2 levels. We conclude that AKI induces a profound and persistent depletion of renal cortical pyruvate, which may induce additional injury.


Subject(s)
Acute Kidney Injury/metabolism , Kidney Cortex/metabolism , Pyruvic Acid/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/physiopathology , Adenosine Triphosphate/metabolism , Animals , Gluconeogenesis/physiology , Glucose/metabolism , Glycogen/metabolism , Hydrogen Peroxide/metabolism , Ischemia/metabolism , Ischemia/physiopathology , Kidney Cortex/physiopathology , Kidney Tubules/metabolism , Lactic Acid/metabolism , Male , Mice , Pyruvate Dehydrogenase Complex/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/physiopathology
15.
PLoS One ; 8(6): e66776, 2013.
Article in English | MEDLINE | ID: mdl-23825563

ABSTRACT

Studies of experimental acute kidney injury (AKI) are critically dependent on having precise methods for assessing the extent of tubular cell death. However, the most widely used techniques either provide indirect assessments (e.g., BUN, creatinine), suffer from the need for semi-quantitative grading (renal histology), or reflect the status of residual viable, not the number of lost, renal tubular cells (e.g., NGAL content). Lactate dehydrogenase (LDH) release is a highly reliable test for assessing degrees of in vitro cell death. However, its utility as an in vivo AKI marker has not been defined. Towards this end, CD-1 mice were subjected to graded renal ischemia (0, 15, 22, 30, 40, or 60 min) or to nephrotoxic (glycerol; maleate) AKI. Sham operated mice, or mice with AKI in the absence of acute tubular necrosis (ureteral obstruction; endotoxemia), served as negative controls. Renal cortical LDH or NGAL levels were assayed 2 or 24 hrs later. Ischemic, glycerol, and maleate-induced AKI were each associated with striking, steep, inverse correlations (r, -0.89) between renal injury severity and renal LDH content. With severe AKI, >65% LDH declines were observed. Corresponding prompt plasma and urinary LDH increases were observed. These observations, coupled with the maintenance of normal cortical LDH mRNA levels, indicated the renal LDH efflux, not decreased LDH synthesis, caused the falling cortical LDH levels. Renal LDH content was well maintained with sham surgery, ureteral obstruction or endotoxemic AKI. In contrast to LDH, renal cortical NGAL levels did not correlate with AKI severity. In sum, the above results indicate that renal cortical LDH assay is a highly accurate quantitative technique for gauging the extent of experimental acute ischemic and toxic renal injury. That it avoids the limitations of more traditional AKI markers implies great potential utility in experimental studies that require precise quantitation of tubule cell death.


Subject(s)
Acute Kidney Injury/enzymology , Biomarkers/metabolism , Kidney Cortex/enzymology , L-Lactate Dehydrogenase/metabolism , Animals , Mice
16.
Kidney Int ; 84(4): 703-12, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23698233

ABSTRACT

This study assessed whether endothelin-1 (ET-1) helps mediate postischemic acute kidney injury (AKI) progression to chronic kidney disease (CKD). The impact(s) of potent ETA or ETB receptor-specific antagonists (Atrasentan and BQ-788, respectively) on disease progression were assessed 24 h or 2 weeks following 30 min of unilateral ischemia in CD-1 mice. Unilateral ischemia caused progressive renal ET-1 protein/mRNA increases with concomitant ETA, but not ETB, mRNA elevations. Extensive histone remodeling consistent with gene activation and increased RNA polymerase II (Pol II) binding occurred at the ET-1 gene. Unilateral ischemia produced progressive renal injury as indicated by severe histologic injury and a 40% loss of renal mass. Pre- and post-ischemia or just postischemic treatment with Atrasentan conferred dramatic protective effects such as decreased tubule/microvascular injury, normalized tissue lactate, and total preservation of renal mass. Nuclear KI-67 staining was not increased by Atrasentan, implying that increased tubule proliferation was not involved. Conversely, ETB blockade had no protective effect. Thus, our findings provide the first evidence that ET-1 operating through ETA can have a critical role in ischemic AKI progression to CKD. Blockade of ETA provided dramatic protection, indicating the functional significance of these results.


Subject(s)
Disease Progression , Endothelin-1/genetics , Endothelin-1/physiology , Kidney Failure, Chronic/physiopathology , Renal Insufficiency, Chronic/physiopathology , Reperfusion Injury/physiopathology , Animals , Atrasentan , Disease Models, Animal , Endothelin A Receptor Antagonists , Endothelin B Receptor Antagonists , Kidney Failure, Chronic/etiology , Male , Mice , Mice, Inbred Strains , Oligopeptides/pharmacology , Piperidines/pharmacology , Pyrrolidines/pharmacology , RNA, Messenger/genetics , Receptor, Endothelin A/drug effects , Receptor, Endothelin A/physiology , Receptor, Endothelin B/drug effects , Receptor, Endothelin B/physiology , Renal Insufficiency, Chronic/etiology , Reperfusion Injury/complications
17.
Am J Physiol Renal Physiol ; 303(10): F1460-72, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22993068

ABSTRACT

Hemopexin (Hpx) is a liver-generated acute phase reactant that binds and neutralizes prooxidant free heme. This study tested whether acute kidney injury (AKI) triggers renal Hpx accumulation, potentially impacting heme Fe-mediated tubular injury. Mice were subjected to glycerol, cisplatin, ischemia-reperfusion (I/R), or endotoxemic [lipopolysaccharide (LPS)] AKI. In each instance, 3- to 30-fold renal cortical and isolated proximal tubule segment (PTS) Hpx increases resulted. Although renal cortex and PTS showed variable Hpx mRNA increases, due, in part, to increased mRNA stability, mRNA levels did not correlate with renal Hpx protein accumulation. Conversely, AKI evoked three- to fourfold increases in hepatic Hpx gene induction, which corresponded with three- to fourfold plasma Hpx increases. Renal immunohistochemistry, and increased urinary Hpx excretion, indicated that circulating Hpx gains tubule luminal/urinary access, followed by proximal tubule endocytic uptake. Paradoxically, in cultured renal cells (HK-2, HEK-293), Fe depletion, and not free heme excess, increased Hpx mRNA. LPS acutely increased HK-2 cell Hpx mRNA. This finding, coupled with observations that LPS evoked ∼30-fold greater renal Hpx mRNA increases than any other AKI model, suggests that inflammation, not heme exposure, activates the renal Hpx gene. Each form of AKI evoked early increases in circulating free heme, which subsequently fell to subnormal levels as plasma Hpx rose. In addition, purified Hpx blunted free Fe-mediated HK-2 cell death. In sum, these data indicated that AKI-associated hepatic stress generates Hpx, which gains renal tubule access. Given its ability to bind free heme and mitigate free Fe toxicity, Hpx loading can potentially confer cytoprotective effects.


Subject(s)
Acute Kidney Injury/metabolism , Hemopexin/metabolism , Kidney Cortex/metabolism , Acute Kidney Injury/chemically induced , Animals , Disease Models, Animal , Endotoxemia/chemically induced , Endotoxemia/metabolism , HEK293 Cells , Humans , Kidney Tubules, Proximal/metabolism , Lipopolysaccharides , Male , Mice , Oxidative Stress/physiology
18.
Am J Physiol Renal Physiol ; 303(1): F139-48, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22573378

ABSTRACT

Haptoglobin (Hp) synthesis occurs almost exclusively in liver, and it is rapidly upregulated in response to stress. Because many of the pathways that initiate hepatic Hp synthesis are also operative during acute kidney injury (AKI), we tested whether AKI activates the renal cortical Hp gene. CD-1 mice were subjected to six diverse AKI models: ischemia-reperfusion, glycerol injection, cisplatin nephrotoxicity, myoglobinuria, endotoxemia, and bilateral ureteral obstruction. Renal cortical Hp gene induction was determined either 4-72 h or 1-3 wk later by measuring Hp mRNA and protein levels. Relative renal vs. hepatic Hp gene induction during endotoxemia was also assessed. Each form of AKI induced striking and sustained Hp mRNA increases, leading to ∼10- to 100-fold renal Hp protein elevations (ELISA; Western blot). Immunohistochemistry, and isolated proximal tubule assessments, indicated that the proximal tubule was the dominant (if not only) site of the renal Hp increases. Corresponding urinary and plasma Hp elevations were surrogate markers of this response. Endotoxemia evoked 25-fold greater Hp mRNA increases in kidney vs. liver, indicating marked renal Hp gene reactivity. Clinical relevance of these findings was suggested by observations that urine samples from 16 patients with established AKI had statistically higher (∼12×) urinary Hp levels than urine samples from either normal subjects or from 15 patients with chronic kidney disease. These AKI-associated urinary Hp increases mirrored those seen for urinary neutrophil gelatinase-associated lipoprotein, a well accepted AKI biomarker gene. In summary, these studies provide the first evidence that AKI evokes rapid, marked, and sustained induction of the proximal tubule Hp gene. Hp's known antioxidant, as well as its protean pro- and anti-inflammatory, actions imply potentially diverse effects on the evolution of acute tubular injury.


Subject(s)
Acute Kidney Injury/metabolism , Haptoglobins/genetics , Kidney Tubules, Proximal/metabolism , Transcriptional Activation , Acute Kidney Injury/genetics , Acute Kidney Injury/urine , Acute-Phase Proteins/metabolism , Aged , Animals , Disease Models, Animal , Endotoxemia/metabolism , Female , Gene Expression , Haptoglobins/metabolism , Haptoglobins/urine , Humans , Male , Mice , Middle Aged , Reperfusion Injury/metabolism , Ureteral Obstruction/metabolism
19.
J Am Soc Nephrol ; 23(6): 1048-57, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22440905

ABSTRACT

AKI induces upregulation of heme oxygenase 1 (HO-1), which exerts cytoprotective effects and modulates the renal response to injury, suggesting that a biomarker of intrarenal HO-1 activity may be useful. Because HO-1 largely localizes to the endoplasmic reticulum and has no known secretory pathway, it is unclear whether plasma or urinary levels of HO-1 reflect intrarenal HO-1 expression. We measured plasma and urinary levels of HO-1 by ELISA during the induction and/or maintenance phases of four mouse models of AKI: ischemia/reperfusion, glycerol-induced rhabdomyolysis, cisplatin nephrotoxicity, and bilateral ureteral obstruction. In addition, we measured levels of HO-1 mRNA and protein in the renal cortex. Each AKI model increased renal HO-1 gene expression, which corresponded with release of HO-1 into plasma and urine by 4 hours. Over time, the magnitudes of plasma and urinary HO-1 paralleled renal cortical gene expression. AKI and the associated uremia did not seem to affect extrarenal HO-1 gene activity assessed in the liver, lung, and spleen. In iron-challenged, cultured proximal tubule cells, we observed a positive correlation between HO-1 mRNA level and HO-1 release. In humans, 10 patients with AKI demonstrated markedly higher levels of plasma and urine HO-1 levels than 10 critically ill patients without AKI or 20 patients with CKD or ESRD. In summary, these data suggest that plasma and urinary HO-1 levels may serve as biomarkers of AKI and intrarenal HO-1 gene activity.


Subject(s)
Acute Kidney Injury/metabolism , Heme Oxygenase-1/blood , Heme Oxygenase-1/urine , Kidney Failure, Chronic/metabolism , Kidney Tubules, Proximal/metabolism , Acute Kidney Injury/pathology , Animals , Biomarkers/metabolism , Blotting, Western , Cells, Cultured/metabolism , Cisplatin/pharmacology , Cohort Studies , Disease Models, Animal , Disease Progression , Glycerol/pharmacology , Heme Oxygenase-1/genetics , Humans , Immunohistochemistry , Kidney Failure, Chronic/pathology , Kidney Tubules, Proximal/cytology , Male , Mice , Mice, Inbred Strains , Prognosis , RNA, Messenger/analysis , Random Allocation , Rhabdomyolysis/genetics , Rhabdomyolysis/metabolism , Sensitivity and Specificity
20.
Am J Physiol Renal Physiol ; 301(6): F1334-45, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21921025

ABSTRACT

There is an emerging concept in clinical nephrology that acute kidney injury (AKI) can initiate chronic kidney disease (CKD). However, potential mechanisms by which this may occur remain elusive. Hence, this study tested the hypotheses that 1) AKI triggers progressive activation of selected proinflammatory genes, 2) there is a relative failure of compensatory anti-inflammatory gene expression, 3) proinflammatory lipid accumulation occurs, 4) these changes correspond with "gene-activating" histone acetylation, and 5) in concert, progressive renal disease results. CD-1 mice were subjected to 30 min of unilateral renal ischemia. Assessments were made 1 day, 1 wk, or 3 wk later. Results were contrasted to those observed in uninjured contralateral kidneys or in kidneys from normal mice. Progressive renal injury occurred throughout the 3-wk postischemic period, as denoted by stepwise increases in neutrophil gelatinase-associated lipocalin gene induction and ongoing histologic damage. By 3 wk postischemia, progressive renal disease was observed (massive tubular dropout; 2/3rds reduction in renal weight). These changes corresponded with progressive increases in proinflammatory cytokine/chemokine gene expression (MCP-1, TNF-α, TGF-ß1), a relative failure of anti-inflammatory enzyme/cytokine (heme oxygenase-1; IL-10) upregulation, and progressive renal lipid (cholesterol/triglyceride) loading. Stepwise increases in collagen III mRNA and collagen deposition (Sirius red staining) indicated a progressive profibrotic response. Postischemic dexamethasone treatment significantly preserved renal mass, indicating functional significance of the observed proinflammatory state. Progressive gene-activating H3 acetylation was observed by ELISA, rising from 5% at baseline to 75% at 3 wk. This was confirmed by chromatin immunoprecipitation assay of target genes. In sum, these results provide experimental support for the clinical concept that AKI can trigger CKD, this is partially mediated by progressive postischemic inflammation, ongoing lipid accumulation results (potentially evoking "lipotoxicity"), and increasing histone acetylation at proinflammatory/profibrotic genes may contribute to this self-sustaining injury-promoting state.


Subject(s)
Acute Kidney Injury/physiopathology , Histones/metabolism , Inflammation/physiopathology , Kidney Failure, Chronic/physiopathology , Reperfusion Injury/physiopathology , Acetylation , Acute-Phase Proteins/metabolism , Animals , Collagen Type III/metabolism , Cytokines/metabolism , Disease Progression , Gelatinases/metabolism , Kidney/chemistry , Kidney/metabolism , Kidney Failure, Chronic/metabolism , Lipids/analysis , Lipocalin-2 , Lipocalins/metabolism , Male , Mice , Oncogene Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...