Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 300(3): L319-29, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21148793

ABSTRACT

During early postnatal alveolar formation, the lung tissue of rat pups undergoes a physiological remodeling involving apoptosis of distal lung cells. Exposure of neonatal rats to severe hyperoxia (≥95% O(2)) both arrests lung growth and results in increased lung cell apoptosis. In contrast, exposure to moderate hyperoxia (60% O(2)) for 14 days does not completely arrest lung cell proliferation and is associated with parenchymal thickening. On the basis of similarities in lung architecture observed following either exposure to 60% O(2), or pharmacological inhibition of physiological apoptosis, we hypothesized that exposure to 60% O(2) would result in an inhibition of physiological lung cell apoptosis. Consistent with this hypothesis, we observed that the parenchymal thickening induced by exposure to 60% O(2) was associated with decreased numbers of apoptotic cells, increased expressions of the antiapoptotic regulator Bcl-xL, and the putative antiapoptotic protein survivin, and decreased expressions of the proapoptotic cleaved caspases-3 and -7. In summary, exposure of the neonatal rat lung to moderate hyperoxia results in an inhibition of physiological apoptosis, which contributes to the parenchymal thickening observed in the resultant lung injury.


Subject(s)
Apoptosis/drug effects , Lung Injury/chemically induced , Lung Injury/pathology , Oxygen/pharmacology , Signal Transduction/drug effects , Air , Animals , Animals, Newborn , Blotting, Western , Caspase 3/metabolism , Cell Count , Cell Death/drug effects , Female , Immunohistochemistry , Lung/drug effects , Lung/enzymology , Lung/pathology , Rats , Rats, Sprague-Dawley , Staurosporine/pharmacology
2.
Pediatr Res ; 66(3): 260-5, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19542903

ABSTRACT

IL-1 beta, a proinflammatory cytokine, may contribute to the development of the chronic neonatal lung injury, bronchopulmonary dysplasia. Chronic neonatal lung injury was induced in rats, by exposure to 60% O2 for 14 d from birth, to determine whether pulmonary IL-1 expression was up-regulated and, if so, whether a daily s.c. IL-1 receptor antagonist injections would be protective. Exposure to 60% O2 for 14 d caused pulmonary neutrophil and macrophage influx, increased tissue fraction and tyrosine nitration, reduced VEGF-A and angiopoietin-1 expression, and reduced small vessel (20-65 microm) and alveolar numbers. Lung IL-1 alpha and -1 beta contents were increased after a 4-d exposure to 60% O2. IL-1 receptor antagonist treatment attenuated the 60% O2-dependent neutrophil influx, the increased tissue fraction, and the reduced alveolar number. Treatment did not restore VEGF-A or angiopoietin-1 expression and only partially attenuated the reduced vessel number in 60% O2-exposed pups. It also caused a paradoxical increase in macrophage influx and a reduction in small vessels in air-exposed pups. We conclude that antagonism of IL-1-mediated effects can, in major part, protect against lung injury in a rat model of 60% O2-induced chronic neonatal lung injury.


Subject(s)
Lung Injury/etiology , Oxygen/adverse effects , Receptors, Interleukin-1/metabolism , Angiopoietin-1/metabolism , Animals , Animals, Newborn , Body Weight , Interleukin 1 Receptor Antagonist Protein/metabolism , Interleukin-1beta/metabolism , Lung/cytology , Lung/metabolism , Lung/pathology , Macrophages/cytology , Macrophages/metabolism , Neutrophils/cytology , Neutrophils/metabolism , Organ Size , Phagocytes/metabolism , Rats , Tyrosine/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...