Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Circ Res ; 115(3): 376-87, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24916111

ABSTRACT

RATIONALE: The senescent cardiac phenotype is accompanied by changes in mitochondrial function and biogenesis causing impairment in energy provision. The relationship between myocardial senescence and Pim kinases deserves attention because Pim-1 kinase is cardioprotective, in part, by preservation of mitochondrial integrity. Study of the pathological effects resulting from genetic deletion of all Pim kinase family members could provide important insight about cardiac mitochondrial biology and the aging phenotype. OBJECTIVE: To demonstrate that myocardial senescence is promoted by loss of Pim leading to premature aging and aberrant mitochondrial function. METHODS AND RESULTS: Cardiac myocyte senescence was evident at 3 months in Pim triple knockout mice, where all 3 isoforms of Pim kinase family members are genetically deleted. Cellular hypertrophic remodeling and fetal gene program activation were followed by heart failure at 6 months in Pim triple knockout mice. Metabolic dysfunction is an underlying cause of cardiac senescence and instigates a decline in cardiac function. Altered mitochondrial morphology is evident consequential to Pim deletion together with decreased ATP levels and increased phosphorylated AMP-activated protein kinase, exposing an energy deficiency in Pim triple knockout mice. Expression of the genes encoding master regulators of mitochondrial biogenesis, PPARγ (peroxisome proliferator-activated receptor gamma) coactivator-1 α and ß, was diminished in Pim triple knockout hearts, as were downstream targets included in mitochondrial energy transduction, including fatty acid oxidation. Reversal of the dysregulated metabolic phenotype was observed by overexpressing c-Myc (Myc proto-oncogene protein), a downstream target of Pim kinases. CONCLUSIONS: Pim kinases prevent premature cardiac aging and maintain a healthy pool of functional mitochondria leading to efficient cellular energetics.


Subject(s)
Aging, Premature/metabolism , Cardiomegaly/metabolism , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-pim-1/genetics , Aging, Premature/genetics , Aging, Premature/pathology , Animals , Cardiomegaly/pathology , Cell Line, Transformed , Cell Respiration/genetics , Cellular Senescence/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Mice , Mice, Knockout , Myocytes, Cardiac/cytology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Proto-Oncogene Mas , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , RNA, Small Interfering/genetics , Rats , Telomere/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Proc Natl Acad Sci U S A ; 110(15): 5969-74, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23530233

ABSTRACT

Mitochondrial morphological dynamics affect the outcome of ischemic heart damage and pathogenesis. Recently, mitochondrial fission protein dynamin-related protein 1 (Drp1) has been identified as a mediator of mitochondrial morphological changes and cell death during cardiac ischemic injury. In this study, we report a unique relationship between Pim-1 activity and Drp1 regulation of mitochondrial morphology in cardiomyocytes challenged by ischemic stress. Transgenic hearts overexpressing cardiac Pim-1 display reduction of total Drp1 protein levels, increased phosphorylation of Drp1-(S637), and inhibition of Drp1 localization to the mitochondria. Consistent with these findings, adenoviral-induced Pim-1 neonatal rat cardiomyocytes (NRCMs) retain a reticular mitochondrial phenotype after simulated ischemia (sI) and decreased Drp1 mitochondrial sequestration. Interestingly, adenovirus Pim-dominant negative NRCMs show increased expression of Bcl-2 homology 3 (BH3)-only protein p53 up-regulated modulator of apoptosis (PUMA), which has been previously shown to induce Drp1 accumulation at mitochondria and increase sensitivity to apoptotic stimuli. Overexpression of the p53 up-regulated modulator of apoptosis-dominant negative adenovirus attenuates localization of Drp1 to mitochondria in adenovirus Pim-dominant negative NRCMs promotes reticular mitochondrial morphology and inhibits cell death during sI. Therefore, Pim-1 activity prevents Drp1 compartmentalization to the mitochondria and preserves reticular mitochondrial morphology in response to sI.


Subject(s)
Dynamins/metabolism , Mitochondria/metabolism , Proto-Oncogene Proteins c-pim-1/physiology , Adenoviridae/genetics , Animals , Mice , Mice, Transgenic , Myocytes, Cardiac/cytology , Phosphorylation , Protein Transport , Proto-Oncogene Proteins c-pim-1/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL