Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38183669

ABSTRACT

Effects of bacterial direct-fed microbial (DFM) mixtures on intake, nutrient digestibility, feeding behavior, ruminal fermentation profile, and ruminal degradation kinetics of beef steers were evaluated. Crossbred Angus ruminally cannulated steers (n = 6; body weight [BW] = 520 ±â€…30 kg) were used in a duplicated 3 × 3 Latin square design and offered a steam-flaked corn-based finisher diet to ad libitum intake for 3, 28-d periods. Treatments were 1) Control (no DFM, lactose carrier only); 2) Treat-A (Lactobacillus animalis, Propionibacterium freudenreichii, Bacillus subtilis, and Bacillus licheniformis), at 1:1:1:3 ratio, respectively; totaling 6 × 109 CFU (50 mg)/animal-daily minimum; and 3) Treat-B, the same DFM combination, but doses at 1:1:3:1 ratio. Bacterial counts were ~30% greater than the minimum expected. Data were analyzed using the GLIMMIX procedure of SAS with the model including the fixed effect of treatment and the random effects of square, period, and animal (square). For repeated measure variables, the fixed effects of treatment, time, and their interaction, and the random effects of square, period, animal (square), and animal (treatment) were used. Preplanned contrasts comparing Control × Treat-A or Treat-B were performed. Intake and major feeding behavior variables were not affected (P ≥ 0.17) by treatments. Steers offered Treat-A had an increased (P = 0.04) ADF digestibility compared with Control. Steers offered Treat-A experienced daily 300 min less (P = 0.04) time under ruminal pH 5.6, a greater (P = 0.04) ruminal pH average and NH3-N concentration (P = 0.05) and tended (P = 0.06) to have a lower ruminal temperature compared to Control. Ruminal VFA was not affected (P ≥ 0.38) by treatments. Steers offered Treat-A increased (P = 0.02) and tended (P = 0.08) to increase the ruminal effective degradable NDF and ADF fractions of the diet-substrate, respectively. When the forage-substrate (low quality) was incubated, steers offered Treat-A tended (P = 0.09) to increase the effective degradable hemicellulose fraction compared to Control. In this experiment, the bacterial combinations did not affect intake and feeding behavior, while the combination with a greater proportion of B. licheniformis (Treat-A) elicited an improved core-fiber digestibility and a healthier ruminal pH pattern, in which the ruminal environment showed to be more prone to induce the effective degradability of fiber fractions, while also releasing more NH3-N.


During the finishing phase, a high-energy diet offers benefits related to beef cattle growth and development. However, it is essential to acknowledge that finisher diets are energy-dense and can pose digestive challenges, such as subacute ruminal acidosis. Digestive disturbances negatively affect animal well-being, growth performance, and economic returns. To address digestive challenges endured by animals on high-energy diets, the current experiment focused on the addition of bacterial direct-fed microbial (DFM) mixtures. A unique combination of bacterial DFM containing Lactobacillus animalis, Propionibacterium freudenreichii, Bacillus subtilis, and Bacillus licheniformis was evaluated. These bacteria have been individually reported to improve cattle nutrient utilization, digestibility, ruminal function, and maintain ruminal pH. The study aimed to investigate the effects of this specific microbial combination and doses when added to beef cattle finisher diets. The DFM mixtures offered seemed to not affect intake and major feeding behavior variables. The DFM combination containing a greater proportion of B. licheniformis (Treat-A) seemed to elicit an improved total tract core-fiber digestibility, and a safer ruminal pH pattern. The ruminal environment was shown to be more prone to improve the ruminal effective degradability of fiber fractions, while also releasing more NH3­N.


Subject(s)
Animal Feed , Digestion , Cattle , Animals , Fermentation , Animal Feed/analysis , Diet/veterinary , Feeding Behavior , Eating , Rumen/metabolism
2.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38190444

ABSTRACT

The effects of the dietary inclusion of a mixture of bacterial direct-fed microbial (DFM) on feedlot beef cattle growth performance, carcass characteristics, nutrient digestibility, feeding behavior, and ruminal papillae morphology were evaluated. Crossbred-Angus steers (n = 192; initial body weight (BW) = 409 kg ±â€…8 kg) were blocked by BW and randomly assigned into 48 pens (4 steers/pen and 16 pens/treatment) following a randomized complete block design. A steam-flaked corn-based fishing diet was offered to ad libitum intake once daily for 153 d containing the following treatments: (1) Control (no DFM, lactose carrier only); (2) treat-A (Lactobacillus animalis, Propionibacterium freudenreichii, Bacillus subtilis, and Bacillus licheniformis), at 1:1:1:3 ratio, respectively; totaling 6 × 109 CFU (50 mg)/animal-daily minimum; and (3) treat-B, the same DFM combination, but with doses at 1:1:3:1 ratio. Bacterial counts were ~30% greater than the minimum expected. Data were analyzed using the GLIMMIX procedure of SAS, with pen as the experimental unit, the fixed effect of treatment, and the random effect of BW-block, while preplanned contrasts comparing Control × treat-A or treat-B were used. Steers offered treat-A had increased carcass-adjusted average daily gain (P = 0.03) by 6.7%, gain efficiency (P < 0.01) by 6%, tended (P = 0.07) to have increased carcass-adjusted final BW by 15 kg, and hot carcass weight (P = 0.07) by 10 kg, while treat-B did not differ (P ≥ 0.17) from control. Overall dry matter (DM) intake (P = 0.36) and other carcass traits (P ≥ 0.13) were not affected by treatments. Steers offered treat-A tended to have increased digestibility of DM (P = 0.07) by 3%, neutral detergent fiber (P = 0.10), and hemicellulose (P = 0.08) by 9% compared with control, while treat-B did not differ (P ≥ 0.10) from control. No treatment × period interactions (P ≥ 0.21) or main effects of treatment (P ≥ 0.12) were observed during 24-h feeding behavior. Steers ruminated, ate, chewed, and were more active (P ≤ 0.01) during the second behavioral assessment (day 113), while drinking behavior was not affected (P ≥ 0.88). Ruminal papillae morphology and ruminal ammonia concentration (ruminal fluid collected at slaughter facility) were not affected by treatment (P ≥ 0.39). Steers offered the DFM treat-A had improved growth performance and it positively affected carcass weight and nutrient digestion. The DFM combinations did not seem to affect feedlot cattle feeding behavior or ruminal papillae morphology.


Direct-fed microbials (DFM) are naturally occurring microorganisms that alter cattle ruminal fermentation and intestinal function and have been shown to improve growth performance and nutrient digestibility of cattle. The use of DFM in animal feed has continuously increased in feedlots as an alternative to traditional antibiotic additives, which have gained negative public perception and additional regulatory scrutiny. High-energy diets can induce physiological challenges to cattle, especially when based on high starch availability ingredients, which may negatively affect animal growth performance. Such physiological digestive challenges may be overcome by a target combination of DFM bacterial strains (Lactobacillus animalis, Propionibacterium freudenreichii, Bacillus subtilis, and Bacillus licheniformis). These microorganisms individually have shown to have positive effects on finishing cattle offered high-energy diets, which highlights the need for research to optimize DFM types and doses to enhance the use of bacterial strains that can positively affect cattle growth performance, carcass traits, nutrient digestibility, and other variables relevant to the physiology of digestion. In the current experiment, feedlot steers offered a specific bacterial DFM combination/dose had improved average daily gain and feed efficiency, which were reflected as a positive influence on hot carcass weight and digestibility of nutrients, while not effectcting feeding behavior and ruminal morphology.


Subject(s)
Diet , Nutrients , Cattle , Animals , Diet/veterinary , Feeding Behavior , Rumen , Lactobacillus , Animal Feed/analysis , Digestion
3.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37971679

ABSTRACT

Beef genetics are used with increasing frequency on commercial dairies. Although use of beef genetics improves calf value, variability has been reported in beef × dairy calf phenotype for traits related to muscularity and carcass composition. The objective of this study was to characterize morphometric and compositional differences between beef, beef × dairy, and dairy-fed cattle. Tested treatment groups included Angus-sired straightbred beef steers and heifers (A × B; n = 45), Angus × Holstein crossbreds (A × H; n = 15), Angus × Jersey crossbreds (A × J; n = 16), and straightbred Holsteins (H, n = 16). Cattle were started on trial at mean BW of 302 ±â€…29.9 kg and then fed at 196 ±â€…3.4 d. Morphometric measures were recorded every 28 d during the finishing period, ultrasound measures were recorded every 56 d, and morphometric carcass measures were recorded upon slaughter. Muscle biopsies were collected from the longissimus thoracis of a subset of steers (n = 43) every 56 d. Strip loins were collected from carcasses (n = 78) for further evaluation. Frame size measured as hip height, hip width, and body length was greatest for H cattle (P < 0.05), and A × H cattle had greater hip height than A × J cattle (P < 0.05). Relative to BW as a percentage of mature size, ribeye area of all cattle increased at a decreasing rate (negative quadratic term: P < 0.01), and all ultrasound measures of fat depots increased at an increasing rate (positive quadratic term: P < 0.01). Although no difference was observed in muscle fiber area across the finishing period from the longissimus thoracis (P = 0.80), H cattle had a more oxidative muscle phenotype than A × B cattle (P < 0.05). Additionally, H cattle had the smallest area of longissimus lumborum in the posterior strip loin, greatest length-to-width ratio of longissimus lumborum in the posterior strip loin, and least round circumference relative to round length (P < 0.05). Beef genetics improved muscularity in portions of the carcass distal to the longissimus thoracis.


Divergent selection of beef and dairy breeds has caused differences in skeletal size and muscularity. When calves from dairy systems enter the beef supply chain, variability in mature size and carcass composition are introduced. The objective of this study was to characterize morphometric differences in cattle populations with different proportions of beef and dairy genetics. Body measurements confirmed differences in mature size of beef-type cattle, dairy-type cattle, and beef × dairy cattle; Holstein influence was associated with greater skeletal growth. With advancing maturity, the rate of muscle accretion decreased quadratically while the rate of fat accretion increased quadratically. Although muscularity across all cattle types was similar in the longissimus near the last rib, differences were observed in the posterior end of the strip loin, the forearm, and the round. Differences in mature size, muscularity, and steak dimensions were observed between beef-type cattle, dairy-type cattle, and beef × dairy cattle.


Subject(s)
Body Composition , Muscle, Skeletal , Cattle/genetics , Animals , Female , Body Composition/genetics , Muscle, Skeletal/metabolism , Meat , Body Weight/genetics , Muscle Fibers, Skeletal
4.
Transl Anim Sci ; 7(1): txad096, 2023.
Article in English | MEDLINE | ID: mdl-37799707

ABSTRACT

Improved reproductive management has allowed dairy cow pregnancies to be optimized for beef production. The objective of this sire-controlled study was to characterize the effects of beef or dairy maternal genetics and the dairy management system on calf growth. Pregnancies were created with a 2 × 2 factorial arrangement of dam breed (Holstein or Jersey) and mating type (artificial insemination or implantation of an in vitro produced embryo from a commercial beef cow oocyte). Resulting calves were reared in a calf ranch. Additionally, commercial beef cows were inseminated and reared resulting calves on range. Therefore, the five treatments were Angus × Holstein (A × H; n = 19), Angus × Jersey (A × J; n = 22), Angus × beef gestated by Holstein (H ET; n = 18), Angus × beef gestated by Jersey (J ET; n = 8), and Angus × beef raised by beef (A × B; n = 20). Beginning at birth, calf body weight, cannon circumference, forearm circumference, top width, hip width, and hip height were measured approximately every 28 d until ~196 d of age. At birth, A × J calves weighed the least (P < 0.01). At 150 d of age, body weight was greatest (P < 0.05) among A × B calves, intermediate among H ET and A × H calves, and least among J ET and A × J calves (P < 0.05). Morphometric differences were detected between treatments (multivariate analysis of variance, P < 0.01). Primary discriminant function scores identified A × B calves having lesser values than A × J or A × H calves (analysis of variance [ANOVA], P < 0.01); A × B calves had greater cannon circumference, greater top width, and less hip height (standardized loadings of -0.47, -0.48, and 0.63, respectively). Secondary discriminant function scores identified J ET and H ET to have greater forearm circumference-a key indicator of muscling-than A × J or A × H (ANOVA, P < 0.01; standardized loading of 0.99). The dairy management system limited growth rate of beef genetics compared to the beef management system. In addition, Holstein dams transmitted greater growth potential than Jersey dams. Replacing maternal dairy genetics with beef genetics moderated frame size and created a more muscular phenotype.

5.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37756643

ABSTRACT

Producer live performance data and carcasses from steers (n = 116) resulting from the mating of four Limousin/Angus sires heterozygous for the F94L myostatin mutation to Jersey/Holstein dams were utilized to evaluate the effects of one copy of the F94L allele on live performance, carcass traits and USDA grades, and boxed beef and retail yields. Slaughter data were collected at time of harvest and carcass data were collected 48 hours postmortem. One side from each of the 58 carcasses was fabricated into boxed beef and retail cuts by experienced lab personnel 5-8 d postmortem. One copy of the F94L allele did not affect gestation length, birth weight, percentage of unassisted births, feedlot average daily gain, live weight at harvest, hot carcass weight, or dressing percentage (P > 0.05). Muscle fiber analysis indicated that the increase in muscularity by the F94L allele in the semitendinosus and longissimus was likely due to hyperplasia as there was a 19% increase in the quantity of myosin heavy chain type IIA and IIX fibers in the semitendinosus (P < 0.05) with no effect on muscle fiber size (P > 0.05). Carcasses from steers with one F94L allele had larger ribeye areas (99.2 vs. 92.3 sq.cm.), greater ribeye width:length ratios (0.498 vs. 0.479), lower USDA yield grades (2.21 vs. 2.66), and lower marbling scores (438 vs. 480) (P < 0.05). Additionally, for boxed beef yields, one F94L allele, vs. zero F94L alleles, increased (P < 0.05) 85/15 trimmings (+0.59%), top round (+0.28%), strip loin (+0.12%), eye round (+0.11%), tenderloin (+0.07%), boneless foreshank (+0.07%), cap/wedge (+0.06%), and tri-tip (+0.04%). Overall, carcasses from steers with one F94L allele had a greater boxed beef yield (+1.06%), boxed beef plus 85/15 trimmings yield (+1.65%), and total retail cuts plus ground beef 85/15 yield (+1.78%) than carcasses from steers with zero F94L alleles (P < 0.05). One copy of the F94L allele utilized in beef-on-dairy breeding system had no significant impact on live performance traits but resulted in lower marbling scores and increased muscularity as evidenced through larger, more beef-shaped ribeyes, lower USDA yield grades, and greater carcass cutout yields (both boxed beef and retail yields).


In a beef-on-dairy system, one copy of the F94L myostatin allele caused increased muscling, resulting in larger, more beef-shaped ribeyes, more desirable yield grades, and greater boxed beef and retail yields, all of which address inherent deficiencies in dairy and dairy-cross carcasses. These improvements were realized with no negative effects on calving ease or live performance. The F94L did cause a significant and meaningful reduction in marbling score; therefore, marbling ability should be paramount in sire selection if F94L sires are utilized. Using a beef sire homozygous for F94L myostatin in a beef-on-dairy system would ensure that all resulting progenies have exactly one copy of the F94L allele, meaning that this genetic tool could be rapidly implemented in the beef-on-dairy industry segment. When selecting sires for beef-on-dairy programs, accurate EPDs should remain the primary evaluation tool as the F94L effects are reflected in accurate EPDs; however, using a sire homozygous for F94L (2 or 0 copies) should result in more consistent progeny.


Subject(s)
Body Composition , Meat , Cattle/genetics , Animals , Body Composition/genetics , Myostatin/genetics , Mutation , Muscle Fibers, Skeletal
6.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37638631

ABSTRACT

We hypothesized that media long-chain fatty acids (LCFA) would more greatly depress cyclic adenosine monophosphate (cAMP), glycerol, and free fatty acid (FFA) concentrations in subcutaneous (s.c.) adipose tissue than in intramuscular (i.m.) adipose tissue via G protein-coupled receptor 120 (GPR120). The GPR120 receptor binds to LCFA, which reduces cAMP production, thereby causing a depression in lipolysis. Fresh ex vivo explants of s.c. and i.m. adipose tissue from the fifth to eighth longissimus thoracic rib muscle section of 8, 22-mo-old Angus crossbred steers were transferred immediately to 6-well culture plates containing 3 mL of Krebs-Henseleit buffer/Hepes/5 mM glucose. Samples were preincubated with 0.5 mM theophylline plus 10 µM forskolin for 30 min, after which increasing concentrations of acetate or propionate (volatile fatty acids, VFA) (0, 1, 5, and 10 mM) in the absence or presence of 100 µM oleate (18:1n-9) or 100 µM palmitate (16:0) (LCFA) were added to the incubation media and incubated an additional 30 min. Main effects of adipose tissue depot (i.m. vs. s.c) and VFA (acetate vs. propionate) for adipose tissue concentrations of forskolin-stimulated cAMP were P = 0.747 and P = 0.106, respectively. The addition of LCFA to the media depressed adipose tissue concentrations of cAMP (P = 0.006) (LCFA main effects). The Tissue × VFA × LCFA interaction was not significant for any dependent variable (P ≥ 0.872). Therefore, concentrations of cAMP, glycerol, and FFA were analyzed separately for i.m. and s.c. adipose tissue by split-plot analysis. Concentrations of cAMP, glycerol, or FFA in i.m. and s.c. adipose tissue were not affected by increasing concentrations of VFA (P ≥ 0.497). Media LCFA had no effect on i.m. adipose tissue cAMP (P = 0.570) or glycerol (P = 0.470) but depressed i.m. adipose tissue FFA (P < 0.001). In s.c. adipose tissue, LCFA decreased concentrations of cAMP (P = 0.042) and glycerol (P = 0.038), but increased FFA concentration (P = 0.026). Expression of GPR120 (P = 0.804) and stearoyl-CoA desaturase (P = 0.538) was not different between s.c. adipose tissue and i.m. adipose tissue. The binding of VFA to the GPR43 receptor depresses cAMP production, thereby attenuating lipolysis, but GPR43 mRNA was undetectable in those adipose tissue samples. These results provide evidence for functional GPR120 receptors in s.c. adipose tissue but question the role of GPR43 in the accumulation of adipose tissue lipids in growing steers.


We measured the mRNA abundance and activity of the fatty acid receptor, G protein-coupled receptor 120 (GPR120) in bovine subcutaneous and intramuscular (marbling) adipose tissue. The GPR120 receptor binds to long-chain fatty acids, which reduces cyclic adenosine monophosphate (cAMP) production, thereby decreasing lipolysis. The mRNA amount of GPR120 was similar between subcutaneous and intramuscular adipose tissues. In subcutaneous and intramuscular adipose tissue incubated in vitro, the fatty acids oleic acid and palmitic acid (the most abundant fatty acids in bovine adipose tissue) strongly depressed the production of cAMP and glycerol in subcutaneous adipose tissue and decreased the concentration of free fatty acids in intramuscular adipose tissue (all measured with commercial kits). This indicates that elevations in adipose tissue or plasma fatty acids may promote fat accumulation by decreasing the breakdown of stored lipids via GPR120. The volatile fatty acids acetate and propionate, which bind to G protein-coupled receptor 43 (GPR43) had no effect on cAMP, glycerol, or free fatty acids. This questions the role of GPR43 in the accumulation of adipose tissue lipids in growing steers.


Subject(s)
Glycerol , Propionates , Animals , Propionates/metabolism , Colforsin/pharmacology , Glycerol/pharmacology , Adipose Tissue/metabolism , Fatty Acids/metabolism , Gene Expression , Acetates/metabolism
7.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37428683

ABSTRACT

Improved reproductive management has allowed dairy cow pregnancies to be optimized for beef production. The objective of this sire-controlled study was to test the feedlot performance of straightbred beef calves raised on a calf ranch and to compare finishing growth performance, carcass characteristics, and mechanistic responses relative to beef × dairy crossbreds and straightbred beef cattle raised in a traditional beef cow/calf system. Tested treatment groups included straightbred beef steers and heifers reared on range (A × B; n = 14), straightbred beef steers and heifers born following embryo transfer to Holstein dams (H ET; n = 15) and Jersey dams (J ET; n = 16) The finishing trial began when cattle weighed 301 ±â€…32.0 kg and concluded after 195 ±â€…1.4 d. Individual intake was recorded from day 28 until shipment for slaughter. All cattle were weighed every 28 d; serum was collected from a subset of steers every 56 d. Cattle of straightbred beef genetics (A × B, H ET, and J ET) and A × H were similar in final shrunk body weight, dry matter intake, and carcass weight (P > 0.05 for each variable). Compared with A × J cattle, J ET was 42 d younger at slaughter with 42 kg more carcass weight (P < 0.05 for both variables). No difference was observed in longissimus muscle area between all treatments (P = 0.40). Fat thickness was greatest for straightbred beef cattle, least for A × J cattle, and intermediate for A × H cattle (P < 0.05). When adjusted for percentage of adjusted final body weight, feed efficiency was greater for straightbred beef cattle compared with beef × dairy crossbred cattle (P = 0.04). A treatment × day interaction was observed for circulating insulin-like growth factor I (IGF-I; P < 0.01); 112 d after being implanted, beef × dairy crossbred cattle had greater circulating IGF-I concentration than cattle of straightbred beef genetics (P < 0.05). Straightbred beef calves born to Jersey cows had more efficient feedlot and carcass performance than A × J crossbreds. Calves of straightbred beef genetics raised traditionally or in a calf ranch performed similarly in the feedlot.


Improved reproductive management has allowed dairy cow pregnancies to be optimized for beef production. The objectives of this study were to use an embryo transfer model 1) to investigate the effect of the dairy management system on beef genetics and 2) to directly compare the merit of Holstein and Jersey genetics for feedlot and carcass performance with modern beef genetics. Feedlot and carcass performance of straightbred beef cattle were similar regardless if the calf was raised in the traditional beef cow/calf system or if the calf was raised at a calf ranch. Based on greater daily live gain and carcass weight, Holstein maternal genetics had greater terminal merit than Jersey maternal genetics. Regardless of dam breed, dairy genetics increased carcass leanness. Minimal differences were detected between adjusted feed efficiency of beef and beef × dairy cattle, but underestimation of mature size of beef × dairy could have overestimated efficiency. Genetic differences were more impactful than differences between the conventional beef and dairy calfhood management systems on feedlot and carcass performance.


Subject(s)
Body Composition , Insulin-Like Growth Factor I , Pregnancy , Animals , Cattle/genetics , Female , Body Composition/genetics , Reproduction , Parturition , Body Weight
8.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37338173

ABSTRACT

Myosin heavy chain (MyHC) type and muscle fiber size are informative but time-consuming variables of interest for livestock growth, muscle biology, and meat science. The objective of this study was to validate a semi-automated protocol for determining MyHC type and size of muscle fibers. Muscle fibers obtained from the longissimus and semitendinosus of fed beef carcasses were embedded and frozen within 45 min of harvest. Immunohistochemistry was used to distinguish MyHC type I, IIA, and IIX proteins, dystrophin, and nuclei in transverse sections of frozen muscle samples. Stained muscle cross sections were imaged and analyzed using two workflows: 1) Nikon workflow which used Nikon Eclipse inverted microscope and NIS Elements software and 2) Cytation5 workflow consisting of Agilent BioTek Cytation5 imaging reader and Gen5 software. With the Cytation5 workflow, approximately six times more muscle fibers were evaluated compared to the Nikon workflow within both the longissimus (P < 0.01; 768 vs. 129 fibers evaluated) and semitendinosus (P < 0.01; 593 vs. 96 fibers evaluated). Combined imaging and analysis took approximately 1 h per sample with the Nikon workflow and 10 min with the Cytation5 workflow. When muscle fibers were evaluated by the objective thresholds of the Cytation5 workflow, a greater proportion of fibers were classified as glycolytic MyHC types, regardless of muscle (P < 0.01). Overall mean myofiber cross-sectional area was 14% smaller (P < 0.01; 3,248 vs. 3,780) when determined by Cytation5 workflow than when determined by Nikon workflow. Regardless, Pearson correlation of mean muscle fiber cross-sectional areas determined by Nikon and Cytation5 workflows was 0.73 (P < 0.01). In both workflows cross-sectional area of MyHC type I fibers was the smallest and area of MyHC type IIX fibers was the largest. These results validated the Cytation5 workflow as an efficient and biologically relevant tool to expedite data capture of muscle fiber characteristics while using objective thresholds for muscle fiber classification.


Properties of muscle tissue are affected by cellular-level changes in the isoform of myosin, a protein involved in muscle contraction. The heavy chain subunit of myosin (MyHC) is affected by breed type, changes as animals mature, and interacts with muscle fiber size when growth-promoting technologies are used in meat animals. While MyHC type and muscle fiber size are important for growth potential and meat quality of livestock, measurement of these variables is time consuming. The objective of this study was to validate a semi-automated workflow for identification of MyHC type and measurement of muscle fibers compared to a previously published manual technique. The semi-automated workflow evaluated approximately six times more myofibers in one-sixth of the time compared to the manual workflow. While the semi-automated technique identified the muscle profile with greater relative abundance of glycolytic muscle fibers and 14% smaller fibers, results from both techniques were strongly correlated and found similar biological results. An additional benefit of the semi-automated workflow was the use of objective thresholds to classify MyHC types as opposed to subjective human judgement of the manual workflow. This study demonstrated that the semi-automated workflow efficiently and objectively imaged, classified, and measured muscle fibers.


Subject(s)
Hamstring Muscles , Myosin Heavy Chains , Cattle , Animals , Myosin Heavy Chains/analysis , Muscle Fibers, Skeletal/metabolism , Immunohistochemistry , Hamstring Muscles/chemistry , Muscle, Skeletal/metabolism , Protein Isoforms
9.
J Anim Sci ; 100(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35953238

ABSTRACT

As commercial fed cattle consume large amounts of concentrate feedstuffs, hindgut health can be challenged. The objective of this study was to evaluate the effects of a commercially available Bacillus feed additive on cattle health outcomes and cecal microbiota of fed cattle at the time of harvest. Commercial cattle from a single feedlot were identified for characterization of cecal microbial communities using 16S ribosomal ribonucleic acid gene sequencing. All cattle were fed a common corn-based finishing diet. Control cattle (CON) were administered no treatment while treated cattle (TRT) were supplemented daily with 0.050 g of MicroSaf 4C 40 (2 billion colony forming units of Bacillus spp.; Phileo by Lesaffre, Milwaukee, WI). Immediately after harvest and evisceration, the cecal contents of cattle were sampled. After DNA extraction, amplification, and sequencing, reads from CON samples (N = 12) and TRT samples (N = 12) were assigned taxonomy using the SILVA 138 database. Total morbidity, first treatment of atypical interstitial pneumonia, and early shipments for harvest were decreased among TRT cattle compared to CON cattle (P ≤ 0.021). On average, cecal microbiota from TRT cattle had greater alpha diversity than microbiota from CON cattle as measured by Shannon diversity, Pielou's evenness, and feature richness (P < 0.010). Additionally, TRT microbial communities were different (P = 0.001) and less variable (P < 0.001) than CON microbial communities when evaluated by unweighted UniFrac distances. By relative abundance across all samples, the most prevalent phyla were Firmicutes (55.40%, SD = 15.97) and Bacteroidetes (28.17%, SD = 17.74) followed by Proteobacteria (6.75%, SD = 10.98), Spirochaetes (4.54%, SD = 4.85), and Euryarchaeota (1.77%, SD = 3.00). Spirochaetes relative abundance in TRT communities was greater than that in CON communities and was differentially abundant between treatments by ANCOM testing (W = 11); Monoglobaceae was the only family-level taxon identified as differentially abundant (W = 59; greater mean relative abundance in TRT group by 2.12 percentage points). Half (N = 6) of the CON samples clustered away from all other samples based on principal coordinates and represented cecal dysbiosis among CON cattle. The results of this study indicated that administering a four-species blend of Bacillus positively supported the cecal microbial communities of finishing cattle. Further research is needed to explore potential mechanisms of action of Bacillus DFM products in feedlot cattle.


Microbes in the rumen break down fiber and complex nutrients into energy that cattle can absorb. Rumen microbes are becoming well studied, but the microbes of the hindgut­specifically of the cecum and large intestine­are less well-studied. As feedlot cattle eat large amounts of grain, maintaining health and balance of microbes in the hindgut is important. Overconsumption of a meal causes a greater proportion of digestion to occur in the hindgut, causing greater acid production that damages the gastrointestinal lining. If dietary microbial supplements support a more diverse microbial population, the challenges caused by greater hindgut digestion could be mitigated. To test this, cecal microbes were characterized after feedlot cattle were fed a conventional diet, with or without a supplement of Bacillus bacteria. Cecal samples from cattle that were fed Bacillus had greater microbial diversity. Approximately half of the cecal samples from cattle that were not fed Bacillus had disrupted microbial balance. Based on taxonomic assignment, bacteria observed in these disrupted samples indicated greater energy density of digesta and increased methane production. Supplementing feedlot cattle with Bacillus could improve hindgut microbial diversity.


Subject(s)
Bacillus , Microbiota , Animal Feed/analysis , Animals , Bacteria , Cattle , DNA , Diet/veterinary , RNA, Ribosomal, 16S/genetics
10.
J Anim Sci Technol ; 63(6): 1397-1410, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34957453

ABSTRACT

The present study was designed to determine the influence of all-trans retinoic acid (ATRA) on adipogenesis-related gene regulation in bovine intramuscular (IM) and subcutaneous (SC) adipose cells during differentiation. Bovine IM and SC adipocytes were isolated from three 19-mo-old, crossbred steers. Adipogenic differentiation was induced upon cultured IM and SC preadipocytes with various doses (0, 0.001, 0.01, 0.1, 1 µM) of ATRA. After 96 h of incubation, cells were harvested and used to measure the gene expression of CCAAT/Enhancer binding protein ß (C/EBPß), peroxisome proliferator-activated receptor (PPAR) γ, glucose transporter 4 (GLUT4), stearoyl CoA desaturase (SCD), and Smad transcription factor 3 (Smad3) relative to the quantity of ribosomal protein subunit 9 (RPS 9). Retinoic acid receptor (RAR) antagonist also tested to identify the effect of ATRA on PPARγ -RAR related gene expression in IM cells. The addition of ATRA to bovine IM decreased (p < 0.05) expression of PPARγ. The expression of PPARγ was also tended to be downregulated (p < 0.1) in high levels (10 µM) of ATRA treatment in SC cells. The treatment of RAR antagonist increased the expression of PPARγ in IM cells. Expression of C/EBPß decreased (p < 0.05) in SC, but no change was observed in IM (p > 0.05). Increasing levels of ATRA may block adipogenic differentiation via transcriptional regulation of PPARγ. The efficacy of ATRA treatment in adipose cells may vary depending on the location.

11.
J Anim Sci ; 99(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34551095

ABSTRACT

Two experiments were performed to evaluate the effects of bismuth subsalicylate (BSS) and calcium-ammonium nitrate (CAN) on in vitro ruminal fermentation, growth, apparent total tract digestibility of nutrients, liver mineral concentration, and carcass quality of beef cattle. In Exp. 1, four ruminally cannulated steers (520 ± 30 kg body weight [BW]) were used as donors to perform a batch culture and an in vitro organic matter digestibility (IVOMD) procedure. Treatments were arranged in a 2 × 2 factorial with factors being BSS (0 or 0.33% of substrate dry matter [DM]) and CAN (0 or 2.22% of substrate DM). In Exp. 2, 200 Angus-crossbred steers (385 ± 27 kg BW) were blocked by BW and allocated to 50 pens (4 steers/pen) in a randomized complete block design with a 2 × 2 + 1 factorial arrangement of treatments. Factors included BSS (0 or 0.33% of the diet DM) and nonprotein nitrogen (NPN) source (urea or encapsulated CAN [eCAN] included at 0.68% or 2.0% of the diet, respectively) with 0.28% ruminally available S (RAS). A low S diet was included as a positive control containing urea (0.68% of DM) and 0.14% RAS. For Exp. 1, data were analyzed using the MIXED procedure of SAS with the fixed effects of BSS, CAN, BSS × CAN, and the random effect of donor. For Exp. 2, the MIXED procedure of SAS was used for continuous variables and the GLIMMIX procedure for categorical data. For Exp. 1, no differences (P > 0.230) were observed for IVOMD. There was a tendency (P = 0.055) for an interaction regarding H2S production. Acetate:propionate increased (P = 0.003) with the addition of CAN. In Exp. 2, there was a NPN source effect (P = 0.032) where steers consuming urea had greater carcass-adjusted final shrunk BW than those consuming eCAN. Intake of DM (P < 0.001) and carcass-adjusted average daily gain (P = 0.024) were reduced by eCAN; however, it did not affect (P = 0.650) carcass-adjusted feed efficiency. Steers consuming urea had greater (P = 0.032) hot carcass weight, and a BSS × NPN interaction (P = 0.019) was observed on calculated yield grade. Apparent absorption of S decreased (P < 0.001) with the addition of BSS. Final liver Cu concentration was reduced (P = 0.042) by 58% in cattle fed BSS, indicating that BSS may decrease Cu absorption and storage in the liver. The results observed in this experiment indicate that BSS does not have negative effects on feedlot steer performance, whereas CAN may hinder performance of steers fed finishing diets.


Subject(s)
Animal Feed , Rumen , Animal Feed/analysis , Animals , Bismuth , Calcium , Cattle , Diet/veterinary , Digestion , Nitrates , Organometallic Compounds , Salicylates
12.
J Anim Sci ; 99(8)2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34337648

ABSTRACT

Technologies that increase the efficiency and sustainability of food animal production to provide meat for a growing population are necessary and must be used in a manner consistent with good veterinary practices, approved labeled use, and environmental stewardship. Compounds that bind to beta-adrenergic receptors (ß-AR), termed beta-adrenergic receptor ligands (ß-ligands), are one such technology and have been in use globally for many years. Though all ß-ligands share some similarities in structure and function, the significance of their structural and pharmacological differences is sometimes overlooked. Structural variations in these molecules can affect absorption, distribution, metabolism, and excretion as well as cause substantial differences in biological and metabolic effects. Several ß-ligands are available for use specifically in cattle production. Ractopamine and zilpaterol are beta-adrenergic agonists approved to increase weight gain, feed efficiency, and carcass leanness in cattle. They both bind to and activate ß1- and ß2-AR. Lubabegron is a newly developed selective beta-adrenergic modulator with unique structural and functional features. Lubabegron displays antagonistic behavior at the ß1- and ß2-AR but agonistic behavior at the ß3-AR. Lubabegron is approved for use in cattle to reduce ammonia emissions per unit of live or carcass weight. Additionally, lubabegron can withstand prolonged use as the ß3-AR lacks structural features needed for desensitization. Due to these unique features of lubabegron, this new ß-ligand provides an additional option in cattle production. The individual properties of each ß-ligand should be considered when making risk management decisions, as unique properties result in varying human food safety profiles that can determine appropriate safe ß-ligand use.


Subject(s)
Adrenergic beta-Agonists , Meat , Adrenergic beta-Agonists/pharmacology , Animals , Cattle , Ligands , Receptors, Adrenergic, beta , Weight Gain
13.
Animals (Basel) ; 11(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072859

ABSTRACT

Two studies were conducted to evaluate the effect of encapsulated methionine on live performance, carcass characteristics, and skeletal muscle development in feedlot steers. In Experiment 1, 128 crossbred steers (body weight [BW] = 341 ± 36.7 kg) were used in a randomized complete block design and supplemented with 0, 4, 8, or 12 g/(head day [d]) of ruminally protected methionine (0MET, 4MET, 8MET, and 12MET, respectively) for 111 d or 139 d. In Exp. 2, 20 steers (BW = 457 ± 58 kg) were stratified by BW and randomly assigned to either the 0MET or 8MET treatment; longissimus muscle (LM) biopsies were collected on d 0, 14, 28, 42, and 56, and analyzed for mRNA and protein expression. Additionally, immunohistochemical analysis was performed to measure fiber type area and distribution as well as the density of muscle nuclei and satellite cells (Myf5, Pax7, and Myf5/Pax7). In Experiment 1, no significant differences were observed for live performance (p ≥ 0.09). There was, however, a linear relationship between LM area and methionine supplementation (p = 0.04), with a 9% increase in the area when steers were supplemented with 12MET compared to 0MET. In Exp. 2, There were no treatment × day interactions (p ≥ 0.10) for expression of mRNA or protein abundance. Although mRNA expression and protein abundance of all genes were influenced by day (p ≤ 0.04), methionine supplementation did not have a significant effect (p ≥ 0.08). There was a significant treatment × day interaction for distribution of MHC-I fibers (p = 0.03), where 8MET supplemented cattle had a greater proportion of MHC-I fibers after 56 d of supplementation than did 0MET steers. Cross-sectional area was increased over time regardless of fiber type (p < 0.01) but was unaffected by treatment (p ≥ 0.36). While nuclei density was not impacted by treatment (p = 0.55), the density of myonuclei increased nearly 55% in 8MET supplemented cattle (p = 0.05). The density of Myf5 positive satellite cells tended to decrease with methionine supplementation (p = 0.10), while the density of Pax7 expressing cells tended to increase (p = 0.09). These results indicate that encapsulated methionine supplementation may influence markers of skeletal muscle growth, and potential improvements in the LM area may exist.

14.
J Anim Sci ; 99(6)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33880538

ABSTRACT

We conducted 3 independent experiments to demonstrate functional G-coupled protein receptor 43 (GPR43) and GPR120 in bovine intramuscular (i.m.) and subcutaneous (s.c.) adipose tissues. We hypothesized that media volatile fatty acids and long-chain fatty acids would affect cAMP-activated protein kinase-alpha (AMPKα) protein expression and cAMP concentrations differently in i.m. and s.c. adipose tissue. Experiment 1: oleic acid (18:1n-9) decreased phosphorylated AMPKα protein (p-AMPKα) and the p-AMPKα/AMPKα protein ratio in i.m. preadipocytes, increased the p-AMPKα/AMPKα protein ratio in bovine satellite cells, and had no effect in s.c. preadipocytes. Experment 2: ex vivo explants from the 5th to 8th longissimus thoracic rib muscle section of Angus crossbred steers were cultured 48 hr in media containing 0.25 µM ciglitizone, 5 mM glucose, and 5 mM acetate, in the absence or the presence of 100 µM oleic acid. Oleic acid increased acetate incorporation into fatty acids and GPR43 gene expression in i.m. adipose tissue (P < 0.05), but oleic acid had no effect on fatty acid synthesis or GPR43 expression in s.c. adipose tissue. Experiment 3: fresh s.c. and i.m. adipose tissue from the 5th to 8th longissimus thoracic rib muscle section of Angus crossbred steers was transferred immediately to 6-well culture plates containing 3 mL of KHB/Hepes/5 mM glucose. Samples were preincubated with 0.5 mM theophylline plus 10 µM forskolin for 30 min, after which increasing concentrations of acetate or propionate (0, 10-3, 10-2.3, and 10-3 M) in the absence or the presence of 100 µM oleic acid or 100 µM palmitic acid (16:0) were added to the incubation media. Acetate had no effect on forskolin-stimulated cAMP production in s.c. adipose tissue but decreased cAMP in i.m. adipose tissue (P < 0.05); this indicates a functional GPR43 receptor in i.m. adipose tissue. The combination of 10-2 M acetate and oleic acid decrease cAMP production in s.c. adipose tissue, consistent with GPR120 receptor activity, but oleic acid and palmitic acid attenuated the depression of cAMP production caused by acetate in i.m. adipose tissue. Palmitic acid depressed cAMP production in s.c. adipose tissue, and increased cAMP production in i.m. adipose tissue (P < 0.05). Propionate had no effect on cAMP production in s.c. or i.m. adipose tissue. These results provide evidence for functional GPR43 receptors in i.m. adipose tissue and GPR120 receptors in s.c. adipose tissue, both of which would suppress lipolysis.


Subject(s)
Adipose Tissue , Fatty Acids , Adipose Tissue/metabolism , Animals , Cattle , Fatty Acids/metabolism , Gene Expression , Lipogenesis , Oleic Acid/metabolism , Oleic Acid/pharmacology
15.
Animals (Basel) ; 11(5)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923260

ABSTRACT

The objective of this study was to evaluate the addition of cane molasses during a 60 day dry period on performance and metabolism of Holstein cows during prepartum and postpartum periods. For experiment 1, 26 primiparous and 28 multiparous cows were used. Upon freshening, all cows were offered a common lactation diet. For experiment 2, six multiparous cows fitted with rumen cannulas were used to measure performance and metabolism, following the same protocol as experiment 1. Ruminal propionate increased by 10% during both prepartum and postpartum periods; however, papillae area was greater for cows not fed molasses, and volatile fatty acids (VFA) absorption from the rumen was not increased, resulting in similar glucagon-like-peptide-2 receptor (GLP-2R) density. The improved dry matter intake, when molasses was added into prepartum diets, translated into increased milk yield and energy-corrected milk (ECM) in Experiment 1 only for multiparous cows. For experiment 2, the improvement on milk performance was also observed, where cows fed molasses had 18.5% greater ECM production. Feeding molasses during a 60 day dry period positively influenced transition cow performance, and it was not accompanied by changes in rumen morphometrics; however, this indicates enhanced adaptation by the rumen epithelium based on similar capabilities for VFA absorption.

16.
J Anim Sci ; 99(3)2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33693597

ABSTRACT

A randomized complete block design experiment with 30 yearling crossbred steers (average BW = 436.3 ± 39.8 kg) fed a steam-flaked corn-based diet was used to evaluate the effects dietary vitamin A (Rovimix A 1000; DSM Nutritional Products Ltd., Sisseln, SUI) supplementation on myogenic gene expression and skeletal muscle fiber characteristics during the finishing phase. Steers were blocked by BW (n = 5 blocks; 6 steers/block), randomly assigned to pens (n = 2 steers/pen), and one of the following treatments: no added vitamin A (0 IU; 0.0 IU/kg of dietary dry matter intake of additional vitamin A), vitamin A supplemented at the estimated requirement (2,200 IU; 2,200 IU/kg of dietary dry matter (DM) of additional vitamin A), and vitamin A supplemented at 5× the estimated requirement (11,000 IU; 11,000 IU/kg of dietary DM of additional vitamin A). After all treatments underwent a 91-d vitamin A depletion period, additional vitamin A was top-dressed at feeding via a ground corn carrier. Blood, longissimus muscle, and liver biopsy samples were obtained on days 0, 28, 56, 84, and 112. Biopsy samples were used for immunohistochemical and mRNA analysis. Sera and liver samples were used to monitor circulating vitamin A and true vitamin A status of the cattle. Expression for myosin heavy chain (MHC)-I diminished and rebounded (P = 0.04) over time. The intermediate fiber type, MHC-IIA, had a similar pattern of expression (P = 0.01) to that of MHC-I. On day 84, C/EBPß expression was also the greatest (P = 0.03). The pattern of PPARγ (P < 0.01) and PPARδ (P < 0.01) expression seemed to mimic that of MHC-I expression, increasing from days 84 to 112. Distribution of MHC-IIA demonstrated a change over time (P = 0.02). Muscle fiber cross-sectional area increased by day (P < 0.01) for each MHC with the notable increase between days 0 and 56. Total nuclei density decreased (P = 0.02) over time. Cells positive for only Myf5 increased (P < 0.01) in density early in the feeding period, then declined, indicating that satellite cells were fusing into fibers. The dual-positive (PAX7+Myf5) nuclei also peaked (P < 0.01) around day 56 then declined. These data indicated that gene expression associated with oxidative proteins may be independent of vitamin A status in yearling cattle.


Subject(s)
Animal Feed , Vitamin A , Animal Feed/analysis , Animals , Body Composition , Cattle , Diet/veterinary , Dietary Supplements/analysis , Gene Expression , Muscle Fibers, Skeletal
17.
J Anim Sci ; 98(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33247910

ABSTRACT

We hypothesized that the inclusion of calcium salts of fatty acid (CSFA) into the diets and the fatty acid (FA) profile of the supplements would impact performance and meat characteristics of Bos indicus bulls. Hence, the objective was to evaluate the effects of CSFA profiles on intake, body weight (BW), carcass, and meat characteristics of feedlot-finished B indicus bulls. Fifty-three Nellore bulls [initial BW 315 ± 5.9 kg and 20 ± 2 mo] were used. At the beginning, 6 bulls were randomly chosen and slaughtered for determination of their BW composition, and the remaining 47 bulls were evaluated during a 140-d experimental period. The bulls were placed in individual pens, blocked according to initial BW and randomly allocated to 1 of the 3 following treatments: (1) control diet containing sugarcane bagasse, ground corn, citrus pulp, peanut meal, and mineral-vitamin mix (CON), (2) CON with the addition of 3.3% of CSFA from soybean oil (CSO), or (3) CON with the addition of a mixture of 3.3% of CSFA from palm, soybean, and cottonseed oils (CPSCO). Diets were offered ad libitum and formulated to be isonitrogenous. Bulls supplemented with CSFA had a greater (P < 0.01) final BW, dry matter intake, average daily gain (ADG), feed efficiency (FE), and FA intake vs. CON. Among carcass parameters, CSFA-supplemented bulls had greater (P < 0.01) carcass ether extract concentration vs. CON bulls. When the CSFA profile was evaluated (CSO vs. CPSCO), CPSCO bulls had a better (P ≤ 0.03) FE, carcass ADG, and hot carcass weight (HCW) vs. CSO bulls. The FA intakes differed among CSFA treatments, as the total saturated, palmitic, and oleic FA intakes were greater for CPSCO (P < 0.01), whereas lower intakes of total unsaturated and polyunsaturated FA (P < 0.01) were observed for CPSCO vs. CSO. Samples from the Longissimus muscle contained greater palmitoleic (P = 0.01) and reduced linoleic (P = 0.02) FA concentrations in CSFA-supplemented bulls vs. CON bulls. In agreement with the FA intakes, CPSCO-supplemented bulls had a greater (P ≤ 0.05) unsaturated FA concentration vs. CSO in Longissimus muscle. In summary, CSFA supplementation improved the performance of finishing B. indicus bulls vs. CON. Moreover, the inclusion of CSFA from palm, soybean, and cottonseed oil benefited the FE, carcass ADG, and HCW compared with the inclusion of CSFA from soybean oil, demonstrating the potential of specific FA for improving the performance and meat quality of B. indicus bulls.


Subject(s)
Animal Feed , Fatty Acids , Animal Feed/analysis , Animals , Body Composition , Calcium , Cattle , Diet/veterinary , Dietary Supplements , Male , Meat/analysis , Salts
18.
Transl Anim Sci ; 4(3): txaa146, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32905313

ABSTRACT

The objective of this study was to evaluate the effects of increasing concentrations of Cr propionate (CrP) on feedlot performance, blood parameters, carcass characteristics, and skeletal muscle fiber properties in feedlot steers. Crossbred steers (n = 32; 367 ± 2.5 kg; 16 pens; 2 hd/pen) were blocked by body weight (BW), and treatment was randomly assigned to pen: (1) 0 mg added Cr/kg diet dry matter (DM) (control), (2) 0.15 mg added Cr/kg diet DM (CrP; KemTRACE Chromium 0.04%, Kemin Industries, Des Moines, IA), (3) 0.30 mg added Cr/kg diet DM, and (4) 0.45 mg added Cr/kg diet DM. Steers were fed ad libitum, and the treatment was top-dressed at the time of feeding. Body weights, blood samples, and longissimus biopsies were collected before feeding on days 0, 28, 56, 91, 119, and 147. Blood sera were harvested for analysis of glucose, insulin, sera urea nitrogen, and non-esterified fatty acid concentrations. Longissimus biopsies were collected for gene expression, protein expression, and immunohistochemical (IHC) analysis. Pen was the experimental unit for live and carcass data, and steer was the experimental unit with day as a repeated measure for sera and IHC analyses. For the entire duration of the trial, a linear increase in average daily gain (ADG) (P = 0.01) and improvement in G:F was observed (P = 0.01) with no change in DMI (P = 0.11) with increasing CrP. A linear increase in hot carcass weight (HCW) (P ≤ 0.01) with no other changes in carcass composition were noted (P ≥ 0.38) as the level of dietary CrP increased. There was no effect of treatment on any sera parameters measured (P ≥ 0.10). No difference was detected for gene or protein expression of glucose transporter type 4 (GLUT4) due to CrP supplementation (P ≥ 0.10). For skeletal muscle fiber distribution and cross-sectional area, there was no effect of treatment (P ≥ 0.10). Density of total GLUT4 did not change due to CrP (P ≥ 0.10). Internalization of GLUT4 was increased in the 0.30 and 0.45 mg/kg treatments (P < 0.01). For total nuclei density and myonuclei density, there were treatment × day interaction tendencies (P ≤ 0.08). Supplementation of CrP did not alter density of satellite cells (P ≥ 0.10). The number of transporters located in the sarcolemma of skeletal muscle fibers did decrease, implying fewer proteins were needed to transport extracellular glucose into the muscle fiber. Therefore, CrP may augment cellular function and growth via increased efficiency of GLUT4 function. These results indicated CrP increases BW, ADG, and HCW, without changes in circulating sera parameters or total GLUT4 expression.

19.
J Anim Sci ; 98(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32812033

ABSTRACT

A randomized complete block design experiment with 30 yearling crossbred steers (initial average body weight [BW] = 297.6 ± 32.8 kg) fed a steam-flaked corn-based diet was used to evaluate finishing performance and carcass characteristics when provided with different concentrations of vitamin A (Rovimix A 1000; DSM Nutritional Products Ltd., Sisseln, Switzerland) subsequent to a depletion phase. Steers were blocked by BW (n = 5 blocks; 6 steers per block), assigned to pens (n = 2 steers per pen), and randomly assigned to one of the following dietary treatments: no added vitamin A (0IU; 0.0 IU/kg dry matter [DM] basis of additional vitamin A), vitamin A supplemented at the estimated National Academies of Sciences, Engineering, and Medicine (NASEM) requirement (2,200IU; 2,200 IU/kg of dietary DM of additional vitamin A), and vitamin A supplemented at 5× the estimated requirement (11,000IU; 11,000 IU/kg of dietary DM of additional vitamin A). The basal diet included minimal vitamin A activity (<200 IU of vitamin A activity/kg of dietary DM) via the provitamin A, beta-carotene. After all animals underwent a 91-d vitamin A depletion period, additional vitamin A was top-dressed at feeding via a ground corn carrier. Liver biopsy samples, BW, and blood were obtained on days -91, -35, 0, 28, 56, 84, and 112. Final BW was collected prior to shipping on day 112. Carcass data were collected by trained personnel upon harvest. Sera and liver samples were used to monitor circulating vitamin A and evaluate true vitamin A status of the cattle. Vitamin A status did not affect interim average daily gain or feed efficiency (G:F; P > 0.05). Throughout the duration of the study, dry matter intake for the 0IU cattle was depressed (P = 0.01). Differences were not observed across treatments for hot carcass weight, rib eye area, back fat thickness, kidney-pelvic-heart fat %, marbling score, or dressing percent (P ≥ 0.10). A treatment × day interaction occurred for both (P < 0.01) sera retinol and liver retinol during phase 2 of the trial. The treatments and sera retinol concentrations were incorporated into a repletion model, resulting in an estimation of liver retinol changes (P < 0.01; R2 = 0.682). However, models used to evaluate depleted animals were less effective. The current NASEM recommended that vitamin A requirement of 2,200 IU/kg is adequate for repletion of vitamin A status of feedlot steers.


Subject(s)
Cattle/physiology , Dietary Supplements/analysis , Vitamin A/administration & dosage , Animal Feed/analysis , Animals , Cattle/growth & development , Diet/veterinary , Liver/metabolism , Male , Nutritional Requirements , Zea mays
20.
Transl Anim Sci ; 4(3): txaa109, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32728660

ABSTRACT

Randomized complete block design experiments (n = 6 experiments) evaluating steroidal implants (all from Merck Animal Health, Madison, NJ) were conducted in large-pen feedlot research facilities between 2015 and 2018 comparing an 80 mg trenbolone acetate (TBA) and 8 mg estradiol-17ß (E2) initial implant (Revalor-IH) and reimplanted with 200 mg TBA and 20 mg E2 (Revalor-200; REPEATED) to a single 80 mg TBA and 8 mg E2 uncoated; 120 mg TBA and 12 mg E2 coated implant (Revalor-XH) at arrival (SINGLE) on growth and carcass responses in finishing heifers. Experiments occurred in Nebraska, Oklahoma, Washington, and Texas. Similar arrival processing was used across experiments where 17,675 heifers [initial body weight = 333 kg SEM (4.1)] were enrolled into 180 pens (90 pens per treatment with 65-240 heifers per pen) and fed for 145-222 d. Only REPEATED heifers were removed from their pen at reimplant. Diets contained monensin and tylosin, consisted of ingredients common to each region, and contained greater than 90% concentrate. Ractopamine hydrochloride was fed for a minimum of 28 d prior to harvest. Linear mixed models were used for all analyses; model-adjusted means for each implant group and the corresponding SEM were generated. Distributions of U.S. Department of Agriculture (USDA) quality grade (QG) and yield grade (YG) were analyzed as ordinal outcomes. No differences (P ≥ 0.11) were detected for any performance parameters except dry matter intake (DMI), where SINGLE had greater (P = 0.02) DMI (9.48 vs. 9.38 ± 0.127 kg) compared with REPEATED. Heifers implanted with REPEATED had greater (P ≤ 0.02) hot carcass weight (HCW; 384 vs. 382 ± 2.8 kg), dressing percentage (64.54 vs. 64.22 ± 0.120%), and ribeye area (91.87 vs. 89.55 ± 0.839 cm2) but less (P ≤ 0.01) rib fat (1.78 vs. 1.83 ± 0.025 cm) and calculated YG (2.82 vs. 2.97 ± 0.040) and similar (P = 0.74) marbling scores (503 vs. 505 ± 5.2) compared with SINGLE heifers. Distributions of USDA YG and QG were impacted (P ≤ 0.03) by treatment such that REPEATED had fewer USDA Prime and YG 4 and 5 carcasses. Heifer growth performance did not differ between implant regimens, but HCW and muscling did, perhaps indicating that REPEATED may be suited for grid-based marketing, and SINGLE might be suited for heifers sold on a live basis depending upon market conditions and value-based grid premiums and discounts. However, these decisions are operational dependent and also may be influenced by factors including animal and employee safety, stress on animals, processing facilities, time of year, labor availability, and marketing strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...