Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
bioRxiv ; 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38559182

ABSTRACT

Protein language models trained on evolutionary data have emerged as powerful tools for predictive problems involving protein sequence, structure, and function. However, these models overlook decades of research into biophysical factors governing protein function. We propose Mutational Effect Transfer Learning (METL), a protein language model framework that unites advanced machine learning and biophysical modeling. Using the METL framework, we pretrain transformer-based neural networks on biophysical simulation data to capture fundamental relationships between protein sequence, structure, and energetics. We finetune METL on experimental sequence-function data to harness these biophysical signals and apply them when predicting protein properties like thermostability, catalytic activity, and fluorescence. METL excels in challenging protein engineering tasks like generalizing from small training sets and position extrapolation, although existing methods that train on evolutionary signals remain powerful for many types of experimental assays. We demonstrate METL's ability to design functional green fluorescent protein variants when trained on only 64 examples, showcasing the potential of biophysics-based protein language models for protein engineering.

2.
Proteins ; 92(7): 808-818, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38333996

ABSTRACT

Isopentenyl phosphate kinases (IPKs) have recently garnered attention for their central role in biocatalytic "isoprenol pathways," which seek to reduce the synthesis of the isoprenoid precursors to two enzymatic steps. Furthermore, the natural promiscuity of IPKs toward non-natural alkyl-monophosphates (alkyl-Ps) as substrates has hinted at the isoprenol pathways' potential to access novel isoprenoids with potentially useful activities. However, only a handful of IPK crystal structures have been solved to date, and even fewer of these contain non-natural substrates bound in the active site. The current study sought to elucidate additional ternary complexes bound to non-natural substrates using the IPK homolog from Thermococcus paralvinellae (TcpIPK). Four such structures were solved, each bound to a different non-natural alkyl-P and the phosphoryl donor substrate/product adenosine triphosphate (ATP)/adenosine diphosphate (ADP). As expected, the quaternary, tertiary, and secondary structures of TcpIPK closely resembled those of IPKs published previously, and kinetic analysis of a novel alkyl-P substrate highlighted the potentially dramatic effects of altering the core scaffold of the natural substrate. Even more interesting, though, was the discovery of a trend correlating the position of two α helices in the active site with the magnitude of an IPK homolog's reaction rate for the natural reaction. Overall, the current structures of TcpIPK highlight the importance of continued structural analysis of the IPKs to better understand and optimize their activity with both natural and non-natural substrates.


Subject(s)
Adenosine Triphosphate , Catalytic Domain , Thermococcus , Substrate Specificity , Thermococcus/enzymology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Crystallography, X-Ray , Models, Molecular , Protein Binding , Kinetics , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Hemiterpenes/metabolism , Hemiterpenes/chemistry , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Protein Conformation, alpha-Helical , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/chemistry , Cloning, Molecular , Gene Expression , Protein Conformation, beta-Strand , Amino Acid Sequence , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Protein Kinases
3.
Int J Ophthalmol ; 17(1): 97-106, 2024.
Article in English | MEDLINE | ID: mdl-38239945

ABSTRACT

AIM: To assess diabetic macular edema (DME) progression during the early phases of the COVID-19 pandemic, when severe societal restrictions raised the concern of possible deterioration of health in patients with systemic conditions, particularly those requiring frequent office visits. METHODS: This is a multicenter retrospective chart review of 370 patients (724 eyes) with an established diagnosis of DME seen on 3 separate visits between January 2019 and July 2021. Period 1 was January 2019 to February 2020 (considered pre-COVID-19), period 2 was March 2020 to December 2020 (considered the height of the pandemic; highest level of pandemic-related clinical and societal regulations) and period 3 was January 2021 to July 2021 (re-adjustment to the new "pandemic norms"). Main outcome measures included visual acuity, body mass index (BMI), blood pressure (BP), hemoglobin A1c (HbA1c), macular thickness, patient adherence to scheduled ophthalmology visits, and DME treatment(s) received at each visit. To facilitate measurement of macular thickness, each macula was divided into 9 Early Treatment Diabetic Retinopathy Study (ETDRS)-defined macular sectors as measured by OCT imaging. RESULTS: There was no change of BMI, systolic BP, and diastolic BP between any of the time periods. HbA1c showed a very small increase from period 1 (7.6%) to period 2 (7.8%, P=0.015) and decreased back to 7.6% at period 3 (P=0.12). Macular thickness decreased for 100% of macular regions. The central macular thickness decreased across all 3 periods from 329.5 to 316.6 µm (P=0.0045). After analysis of multiple variables including HbA1c, BMI, adherence to scheduled appointments, different clinic centers, and treatment interventions, there was no easily identifiable subgroup of patients that experienced the increase in DME. CONCLUSION: DME doesn't worsen during the COVID-19 pandemic, instead sustaining a very small but statistically significant improvement. While identifying a mechanism behind our findings is beyond the scope of this study, potential explanations may include a delay in retinal changes beyond our study period, an unexpected increase in treatment frequency despite pandemic restrictions, and an unanticipated pandemic-related improvement in some lifestyle factors that may have had a positive impact on DME.

4.
ChemCatChem ; 15(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37954549

ABSTRACT

Aza-substitution, the replacement of aromatic CH groups with nitrogen atoms, is an established medicinal chemistry strategy for increasing solubility, but current methods of accessing functionalized azaindoles are limited. In this work, indole-alkylating aromatic prenyltransferases (PTs) were explored as a strategy to directly functionalize azaindole-substituted analogs of natural products. For this, a series of aza-l-tryptophans (Aza-Trp) featuring N-substitution of every aromatic CH position of the indole ring and their corresponding cyclic Aza-l-Trp-l-proline dipeptides (Aza-CyWP), were synthesized as substrate mimetics for the indole-alkylating PTs FgaPT2, CdpNPT, and FtmPT1. We then demonstrated most of these substrate analogs were accepted by a PT, and the regioselectivity of each prenylation was heavily influenced by the position of the N-substitution. Remarkably, FgaPT2 was found to produce cationic N-prenylpyridinium products, representing not only a new substrate class for indole PTs but also a previously unobserved prenylation mode. The discovery that nitrogenous indole bioisosteres can be accepted by PTs thus provides access to previously unavailable chemical space in the search for bioactive indolediketopiperazine analogs.

5.
Sci Rep ; 13(1): 16919, 2023 10 07.
Article in English | MEDLINE | ID: mdl-37805649

ABSTRACT

Type 2 diabetes (T2D) and its complications can have debilitating, sometimes fatal consequences for afflicted individuals. The disease can be difficult to control, and therapeutic strategies to prevent T2D-induced tissue and organ damage are needed. Here we describe the results of administering a potent and selective inhibitor of Protein Kinase C (PKC) family members PKCα and PKCß, Cmpd 1, in the ZSF1 obese rat model of hyperphagia-induced, obesity-driven T2D. Although our initial intent was to evaluate the effect of PKCα/ß inhibition on renal damage in this model setting, Cmpd 1 unexpectedly caused a marked reduction in the hyperphagic response of ZSF1 obese animals. This halted renal function decline but did so indirectly and indistinguishably from a pair feeding comparator group. However, above and beyond this food intake effect, Cmpd 1 lowered overall animal body weights, reduced liver vacuolation, and reduced inguinal adipose tissue (iWAT) mass, inflammation, and adipocyte size. Taken together, Cmpd 1 had strong effects on multiple disease parameters in this obesity-driven rodent model of T2D. Further evaluation for potential translation of PKCα/ß inhibition to T2D and obesity in humans is warranted.


Subject(s)
Adiposity , Diabetes Mellitus, Type 2 , Humans , Rats , Animals , Adiposity/physiology , Protein Kinase C-alpha , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Obesity/complications , Obesity/drug therapy , Hyperphagia/complications , Hyperphagia/drug therapy , Kidney/physiology
6.
Nat Commun ; 14(1): 6493, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37838725

ABSTRACT

Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD-UMOD), a leading hereditary kidney disease. There are no targeted therapies. In our generated mouse model recapitulating human ADTKD-UMOD carrying a leading UMOD mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are impaired, leading to cGAS-STING activation and tubular injury. Moreover, we demonstrate that inducible tubular overexpression of mesencephalic astrocyte-derived neurotrophic factor (MANF), a secreted endoplasmic reticulum protein, after the onset of disease stimulates autophagy/mitophagy, clears mutant UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, thus protecting kidney function in our ADTKD mouse model. Conversely, genetic ablation of MANF in the mutant thick ascending limb tubular cells worsens autophagy suppression and kidney fibrosis. Together, we have discovered MANF as a biotherapeutic protein and elucidated previously unknown mechanisms of MANF in the regulation of organelle homeostasis, which may have broad therapeutic applications to treat various proteinopathies.


Subject(s)
Polycystic Kidney Diseases , Humans , Mice , Animals , Autophagy/genetics , Homeostasis , Fibrosis , Nerve Growth Factors/genetics
7.
ACS Synth Biol ; 12(9): 2600-2615, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37642646

ABSTRACT

Engineered proteins have emerged as novel diagnostics, therapeutics, and catalysts. Often, poor protein developability─quantified by expression, solubility, and stability─hinders utility. The ability to predict protein developability from amino acid sequence would reduce the experimental burden when selecting candidates. Recent advances in screening technologies enabled a high-throughput (HT) developability dataset for 105 of 1020 possible variants of protein ligand scaffold Gp2. In this work, we evaluate the ability of neural networks to learn a developability representation from a HT dataset and transfer this knowledge to predict recombinant expression beyond observed sequences. The model convolves learned amino acid properties to predict expression levels 44% closer to the experimental variance compared to a non-embedded control. Analysis of learned amino acid embeddings highlights the uniqueness of cysteine, the importance of hydrophobicity and charge, and the unimportance of aromaticity, when aiming to improve the developability of small proteins. We identify clusters of similar sequences with increased recombinant expression through nonlinear dimensionality reduction and we explore the inferred expression landscape via nested sampling. The analysis enables the first direct visualization of the fitness landscape and highlights the existence of evolutionary bottlenecks in sequence space giving rise to competing subpopulations of sequences with different developability. The work advances applied protein engineering efforts by predicting and interpreting protein scaffold expression from a limited dataset. Furthermore, our statistical mechanical treatment of the problem advances foundational efforts to characterize the structure of the protein fitness landscape and the amino acid characteristics that influence protein developability.


Subject(s)
Amino Acids , Cysteine , Amino Acid Sequence , Neural Networks, Computer , Protein Engineering
8.
Sci Rep ; 13(1): 8922, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37264117

ABSTRACT

The intestinal epithelium comprises diverse cell types and executes many specialized functions as the primary interface between luminal contents and internal organs. A key function provided by the epithelium is maintenance of a barrier that protects the individual from pathogens, irritating luminal contents, and the microbiota. Disruption of this barrier can lead to inflammatory disease within the intestinal mucosa, and, in more severe cases, to sepsis. Animal models to study intestinal permeability are costly and not entirely predictive of human biology. Here we present a model of human colon barrier function that integrates primary human colon stem cells into Draper's PREDICT96 microfluidic organ-on-chip platform to yield a high-throughput system appropriate to predict damage and healing of the human colon epithelial barrier. We have demonstrated pharmacologically induced barrier damage measured by both a high throughput molecular permeability assay and transepithelial resistance. Using these assays, we developed an Inflammatory Bowel Disease-relevant model through cytokine induced damage that can support studies of disease mechanisms and putative therapeutics.


Subject(s)
Colon , Inflammatory Bowel Diseases , Animals , Humans , Disease Models, Animal , Colon/metabolism , Inflammatory Bowel Diseases/metabolism , Intestines , Intestinal Mucosa/metabolism , Permeability
9.
bioRxiv ; 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36711449

ABSTRACT

Misfolded protein aggregates may cause toxic proteinopathy, including autosomal dominant tubulointerstitial kidney disease due to uromodulin mutations (ADTKD- UMOD ), one of the leading hereditary kidney diseases, and Alzheimer’s disease etc. There are no targeted therapies. ADTKD is also a genetic form of renal fibrosis and chronic kidney disease, which affects 500 million people worldwide. For the first time, in our newly generated mouse model recapitulating human ADTKD- UMOD carrying a leading UMOD deletion mutation, we show that autophagy/mitophagy and mitochondrial biogenesis are severely impaired, leading to cGAS- STING activation and tubular injury. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a novel endoplasmic reticulum stress-regulated secreted protein. We provide the first study that inducible tubular overexpression of MANF after the onset of disease stimulates autophagy/mitophagy and clearance of the misfolded UMOD, and promotes mitochondrial biogenesis through p-AMPK enhancement, resulting in protection of kidney function. Conversely, genetic ablation of endogenous MANF upregulated in the mutant mouse and human tubular cells worsens autophagy suppression and kidney fibrosis. Together, we discover MANF as a novel biotherapeutic protein and elucidate previously unknown mechanisms of MANF in regulating organelle homeostasis to treat ADTKD, which may have broad therapeutic application to treat various proteinopathies.

10.
Inflamm Bowel Dis ; 29(2): 195-206, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36356046

ABSTRACT

BACKGROUND: Patient-derived organoid (PDO) models offer potential to transform drug discovery for inflammatory bowel disease (IBD) but are limited by inconsistencies with differentiation and functional characterization. We profiled molecular and cellular features across a range of intestinal organoid models and examined differentiation and establishment of a functional epithelial barrier. METHODS: Patient-derived organoids or monolayers were generated from control or IBD patient-derived colon or ileum and were molecularly or functionally profiled. Biological or technical replicates were examined for transcriptional responses under conditions of expansion or differentiation. Cell-type composition was determined by deconvolution of cell-associated gene signatures and histological features. Differentiated control or IBD-derived monolayers were examined for establishment of transepithelial electrical resistance (TEER), loss of barrier integrity in response to a cocktail of interferon (IFN)-γ and tumor necrosis factor (TNF)-α, and prevention of cytokine-induced barrier disruption by the JAK inhibitor, tofacitinib. RESULTS: In response to differentiation media, intestinal organoids and monolayers displayed gene expression patterns consistent with maturation of epithelial cell types found in the human gut. Upon differentiation, both colon- and ileum-derived monolayers formed functional barriers, with sustained TEER. Barrier integrity was compromised by inflammatory cytokines IFN-γ and TNF-α, and damage was inhibited in a dose-dependent manner by tofacitinib. CONCLUSIONS: We describe the generation and characterization of human colonic or ileal organoid models capable of functional differentiation to mature epithelial cell types. In monolayer culture, these cells formed a robust epithelial barrier with sustained TEER and responses to pharmacological modulation. Our findings demonstrate that control and IBD patient-derived organoids possess consistent transcriptional and functional profiles that can enable development of epithelial-targeted therapies.


Subject(s)
Inflammatory Bowel Diseases , Intestines , Organoids , Humans , Cytokines/metabolism , Epithelial Cells/metabolism , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/pathology , Organoids/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Intestines/physiology
11.
ACS Chem Biol ; 17(1): 85-102, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34905349

ABSTRACT

Isopentenyl phosphate kinases (IPKs) catalyze the ATP-dependent phosphorylation of isopentenyl monophosphate (IP) to isopentenyl diphosphate (IPP) in the alternate mevalonate pathways of the archaea and plant cytoplasm. In recent years, IPKs have also been employed in artificial biosynthetic pathways called "(iso) prenol pathways" that utilize promiscuous kinases to sequentially phosphorylate (iso) prenol and generate the isoprenoid precursors IPP and dimethylallyl diphosphate (DMAPP). Furthermore, IPKs have garnered attention for their impressive substrate promiscuity toward non-natural alkyl-monophosphates (alkyl-Ps), which has prompted their utilization as biocatalysts for the generation of novel isoprenoids. However, none of the IPK crystal structures currently available contain non-natural substrates, leaving the roles of active-site residues in substrate promiscuity ambiguous. To address this, we present herein the high-resolution crystal structures of an IPK from Candidatus methanomethylophilus alvus (CMA) in the apo form and bound to natural and non-natural substrates. Additionally, we describe active-site engineering studies leading to enzyme variants with broadened substrate scope, as well as structure determination of two such variants (Ile74Ala and Ile146Ala) bound to non-natural alkyl-Ps. Collectively, our crystallographic studies compare six structures of CMA variants in different ligand-bound forms and highlight contrasting structural dynamics of the two substrate-binding sites. Furthermore, the structural and mutational studies confirm a novel role of the highly conserved DVTGG motif in catalysis, both in CMA and in IPKs at large. As such, the current study provides a molecular basis for the substrate-binding modes and catalytic performance of CMA toward the goal of developing IPKs into useful biocatalysts.


Subject(s)
Archaea/enzymology , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Gene Expression Regulation, Archaeal , Gene Expression Regulation, Enzymologic , Genome, Archaeal , Models, Molecular , Mutation , Protein Conformation , Protein Kinases , Substrate Specificity
12.
J Invasive Cardiol ; 33(12): E998-E1003, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34817395

ABSTRACT

OBJECTIVE: We aimed to characterize outcomes associated with cangrelor administration used in an antiplatelet bridging strategy in real-world clinical scenarios within a large academic medical system. BACKGROUND: Cangrelor has been used for antiplatelet bridging in perioperative settings or for patients unable to take oral medications. Prior studies in these settings have reported bleeding rates from 0%-40%. METHODS: Patients were retrospectively identified via chart review and included if they were over 18 years old, had coronary or peripheral arterial stents, and had received at least 1 hour of cangrelor infusion during inpatient admission. The primary endpoint was Bleeding Academic Research Consortium (BARC) 3-5 bleeding during cangrelor infusion or within 48 hours of discontinuation; secondary endpoints were bleeding events defined by Thrombolysis in Myocardial Infarction (TIMI), Global Use of Strategies to Open Occluded Arteries (GUSTO), and International Society on Thrombosis and Hemostasis (ISTH) criteria, as well as BARC 2 bleeding. RESULTS: Thirty-one patients met the inclusion criteria. Cangrelor indications were bridging to procedure in 22 patients (71.0%) and inability to take oral P2Y12 inhibitors in 9 patients (29.0%). Twenty-three patients (74.2%) were men, 11 patients (35.5%) were in cardiogenic shock, and 4 patients (12.9%) were on extracorporeal membrane oxygenation (ECMO) at the time of administration. No patients received cangrelor for routine percutaneous coronary intervention. Of the 31 patients, 13 (41.9%) had BARC 3-5 bleeding and 7 (22.6%) expired during hospitalization. All 4 patients on ECMO suffered BARC 3-5 bleeding. CONCLUSIONS: We reviewed the use of cangrelor for antiplatelet bridging in real-world clinical scenarios and observed higher rates of clinically significant bleeding than seen in other similar studies. Our study suggests careful consideration when using cangrelor in a sick patient population.


Subject(s)
Adenosine Monophosphate , Blood Platelets/drug effects , Platelet Aggregation Inhibitors , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adolescent , Humans , Infusions, Intravenous , Platelet Aggregation Inhibitors/administration & dosage , Platelet Aggregation Inhibitors/adverse effects , Retrospective Studies
13.
ChemCatChem ; 13(17): 3781-3788, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34630731

ABSTRACT

The widespread utility of isoprenoids has recently sparked interest in efficient synthesis of isoprene-diphosphate precursors. Current efforts have focused on evaluating two-step "isoprenol pathways," which phosphorylate prenyl alcohols using promiscuous kinases/phosphatases. The convergence on isopentenyl phosphate kinases (IPKs) in these schemes has prompted further speculation about the class's utility in synthesizing non-natural isoprenoids. However, the substrate promiscuity of IPKs in general has been largely unexplored. Towards this goal, we report the biochemical characterization of five novel IPKs from Archaea and the assessment of their substrate specificity using 58 alkyl-monophosphates. This study reveals the IPK-catalyzed synthesis of 38 alkyl-diphosphate analogs and discloses broad substrate specificity of IPKs. Further, to demonstrate the biocatalytic utility of IPK-generated alkyl-diphosphates, we also highlight the synthesis of alkyl-l-tryptophan derivatives using coupled IPK-prenyltransferase reactions. These results reveal IPK-catalyzed reactions are compatible with downstream isoprenoid enzymes and further support their development as biocatalytic tools for the synthesis of non-natural isoprenoids.

14.
Am J Physiol Renal Physiol ; 321(2): F236-F244, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34251273

ABSTRACT

Autosomal dominant tubulointerstitial kidney disease (ADTKD)-uromodulin (UMOD) is the most common nonpolycystic genetic kidney disease, but it remains unrecognized due to its clinical heterogeneity and lack of screening test. Moreover, the fact that the clinical feature is a poor predictor of disease outcome further highlights the need for the development of mechanistic biomarkers in ADTKD. However, low abundant urinary proteins secreted by thick ascending limb cells, where UMOD is synthesized, have posed a challenge for the detection of biomarkers in ADTKD-UMOD. In the CRISPR/Cas9-generated murine model and patients with ADTKD-UMOD, we found that immunoglobulin heavy chain-binding protein (BiP), an endoplasmic reticulum chaperone, was exclusively upregulated by mutant UMOD in the thick ascending limb and easily detected by Western blot analysis in the urine at an early stage of disease. However, even the most sensitive ELISA failed to detect urinary BiP in affected individuals. We therefore developed an ultrasensitive, plasmon-enhanced fluorescence-linked immunosorbent assay (p-FLISA) to quantify urinary BiP concentration by harnessing the newly invented ultrabright fluorescent nanoconstruct, termed "plasmonic Fluor." p-FLISA demonstrated that urinary BiP excretion was significantly elevated in patients with ADTKD-UMOD compared with unaffected controls, which may have potential utility in risk stratification, disease activity monitoring, disease progression prediction, and guidance of endoplasmic reticulum-targeted therapies in ADTKD.NEW & NOTEWORTHY Autosomal dominant tubulointerstitial kidney disease (ADTKD)-uromodulin (UMOD) is an underdiagnosed cause of chronic kidney disease (CKD). Lack of ultrasensitive bioanalytical tools has hindered the discovery of low abundant urinary biomarkers in ADTKD. Here, we developed an ultrasensitive plasmon-enhanced fluorescence-linked immunosorbent assay (p-FLISA). p-FLISA demonstrated that secreted immunoglobulin heavy chain-binding protein is an early urinary endoplasmic reticulum stress biomarker in ADTKD-UMOD, which will be valuable in monitoring disease progression and the treatment response in ADTKD.


Subject(s)
Biomarkers/urine , Endoplasmic Reticulum Stress/physiology , Heat-Shock Proteins/urine , Immunosorbent Techniques , Nephritis, Interstitial/urine , Animals , Endoplasmic Reticulum Chaperone BiP , Humans , Mice , Nephritis, Interstitial/genetics , Uromodulin/genetics
15.
J Am Coll Emerg Physicians Open ; 1(1): 17-23, 2020 Feb.
Article in English | MEDLINE | ID: mdl-33000009

ABSTRACT

OBJECTIVE: Little is known about the presentation or management of patients with headache in the out-of-hospital setting. Our primary objective is to describe the out-of-hospital assessment and treatment of adults with benign headache. We also describe meaningful pain reduction stratified by commonly administered medications. METHODS: This retrospective evaluation was conducted using data from a large national cohort. We included all 911 responses by paramedics for patients 18 and older with headache. We excluded patients with trauma, fever, suspected alcohol/drug use, or who received medications suggestive of an alternate condition. We presented our findings with descriptive statistics. RESULTS: Of the 5,977,612 emergency responses, 1.1% (66,235) had a provider-documented primary impression of headache or migraine and 52.5% (34,763) met inclusion criteria. An initial pain score was recorded for 73.5% (25,544) of patients, and 58.5% (14,948) of these patients had multiple pain scores documented. Of the patients with multiple pain scores documented, 53.8% (8037) of patients had an initial pain score >5. Of these, 7.1% (573) were administered any medication. Among patients receiving a single medication, Fentanyl was the most commonly administered (32.1%, 126). As a group, opioids were the most commonly administered class of drugs (38.9%, 153) and were associated with the largest proportion of clinically significant pain reduction (69.3%, 106). Dopamine antagonists were given least frequently (9.9%, 39) but had the second largest proportion of pain reduction (43.6%, 17). CONCLUSION: Out-of-hospital pain scores were documented infrequently and less than one in five patients with initial pain scores >5 received medication. Additionally, adherence to evidence-based guidelines was infrequent.

16.
Appl Microbiol Biotechnol ; 104(18): 7853-7865, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32725322

ABSTRACT

Daptomycin is a last resort antibiotic for the treatment of infections caused by many Gram-positive bacterial strains, including vancomycin-resistant Enterococcus (VRE) and methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA). However, the emergence of daptomycin-resistant strains of S. aureus and Enterococcus in recent years has renewed interest in synthesizing daptomycin analogs to overcome resistance mechanisms. Within this context, three aromatic prenyltransferases have been shown to accept daptomycin as a substrate, and the resulting prenylated analog was shown to be more potent against Gram-positive strains than the parent compound. Consequently, utilizing prenyltransferases to derivatize daptomycin offered an attractive alternative to traditional synthetic approaches, especially given the molecule's structural complexity. Herein, we report exploiting the ability of prenyltransferase CdpNPT to synthesize alkyl-diversified daptomycin analogs in combination with a library of synthetic non-native alkyl-pyrophosphates. The results revealed that CdpNPT can transfer a variety of alkyl groups onto daptomycin's tryptophan residue using the corresponding alkyl-pyrophosphates, while subsequent scaled-up reactions suggested that the enzyme can alkylate the N1, C2, C5, and C6 positions of the indole ring. In vitro antibacterial activity assays using 16 daptomycin analogs revealed that some of the analogs displayed 2-80-fold improvements in potency against MRSA, VRE, and daptomycin-resistant strains of S. aureus and Enterococcus faecalis. Thus, along with the new potent analogs, these findings have established that the regio-chemistry of alkyl substitution on the tryptophan residue can modulate daptomycin's potency. With additional protein engineering to improve the regio-selectivity, the described method has the potential to become a powerful tool for diversifying complex indole-containing molecules. KEY POINTS: • CdpNPT displays impressive donor promiscuity with daptomycin as the acceptor. • CdpNPT catalyzes N1-, C2-, C5-, and C6-alkylation on daptomycin's tryptophan residue. • Differential alkylation of daptomycin's tryptophan residue modulates its activity.


Subject(s)
Daptomycin , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Daptomycin/pharmacology , Microbial Sensitivity Tests , Staphylococcus aureus , Vancomycin
17.
J Card Fail ; 26(10): 870-875, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32681883

ABSTRACT

BACKGROUND: Impella (Abiomed Inc, Danvers, MA) is a temporary mechanical support device positioned across the aortic valve, and can be used to support patient before LVAD implantation. There are no data on the incidence of aortic insufficiency (AI) in patients supported with Impella as a bridge to durable LVAD implantation. We sought to assess the incidence of AI in patients with Impella support as a bridge to durable left ventricular assist device (LVAD) implantation. METHODS: We reviewed all patients undergoing primary LVAD implantation at the University of Pennsylvania from January 2015 onward, comparing those supported with Impella as temporary mechanical support with those supported by either venoarterial extracorporeal life support or an intra-aortic balloon pump. We reviewed transthoracic echocardiography preoperatively, as well as at 1 week, 1, 3, 6, 9, and 12 months after LVAD implantation. RESULTS: A total of 215 echocardiograms were analyzed in 41 patients. Eleven patients were supported with Impella before LVAD implant-6 patients with Impella alone (5 with Impella CP, 1 with Impella 5.0) and 5 with Impella in conjunction with venoarterial extracorporeal life support (2 with Impella 2.5, 2 with Impella CP, and 1 with Impella 5.0). After LVAD implant, mild or moderate AI developed in 82% of patients supported with Impella (9 of 11) compared with 43% of those without Impella (13 of 30) (P = .038). CONCLUSIONS: Patients supported by Impella as a bridge to durable LVAD have a higher risk of developing AI. Further studies are needed to assess this risk as the use of the Impella increases.


Subject(s)
Aortic Valve Insufficiency , Heart Failure , Heart-Assist Devices , Aortic Valve , Aortic Valve Insufficiency/epidemiology , Aortic Valve Insufficiency/etiology , Aortic Valve Insufficiency/surgery , Heart Failure/epidemiology , Heart Failure/etiology , Heart Failure/therapy , Heart-Assist Devices/adverse effects , Humans , Retrospective Studies , Treatment Outcome
18.
Appl Microbiol Biotechnol ; 104(10): 4383-4395, 2020 May.
Article in English | MEDLINE | ID: mdl-32189045

ABSTRACT

Aromatic prenyltransferases are known for their extensive promiscuity toward aromatic acceptor substrates and their ability to form various carbon-carbon and carbon-heteroatom bonds. Of particular interest among the prenyltransferases is NphB, whose ability to geranylate cannabinoid precursors has been utilized in several in vivo and in vitro systems. It has therefore been established that prenyltransferases can be utilized as biocatalysts for the generation of useful compounds. However, recent observations of non-native alkyl-donor promiscuity among prenyltransferases indicate the role of NphB in biocatalysis could be expanded beyond geranylation reactions. Therefore, the goal of this study was to elucidate the donor promiscuity of NphB using different acceptor substrates. Herein, we report distinct donor profiles between NphB-catalyzed reactions involving the known substrate 1,6-dihydroxynaphthalene and an FDA-approved drug molecule sulfabenzamide. Furthermore, we report the first instance of regiospecific, NphB-catalyzed N-alkylation of sulfabenzamide using a library of non-native alkyl-donors, indicating the biocatalytic potential of NphB as a late-stage diversification tool. KEY POINTS: • NphB can utilize the antibacterial drug sulfabenzamide as an acceptor. • The donor profile of NphB changes dramatically with the choice of acceptor. • NphB performs a previously unknown regiospecific N-alkylation on sulfabenzamide. • Prenyltransferases like NphB can be utilized as drug-alkylating biocatalysts.


Subject(s)
Dimethylallyltranstransferase/metabolism , Streptomyces/enzymology , Alkylation , Biocatalysis , Dimethylallyltranstransferase/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Naphthols/metabolism , Prenylation , Sensitivity and Specificity , Streptomyces/genetics , Substrate Specificity , Sulfonamides/metabolism
19.
Prog Brain Res ; 244: 233-253, 2019.
Article in English | MEDLINE | ID: mdl-30732839

ABSTRACT

Analytical meditation and monastic debate are contemplative practices engaged in by Tibetan Buddhist monastics that have up to now been largely unexplored in Western contemplative science. The highly physical form of contemplative debating plays an important role in the monastic curriculum. Based on discussions and recorded interviews Tibetan monastic teachers and senior students at Sera Jey Monastic University and preliminary experiments, we outline an initial theory that elucidates the psychological mechanisms underlying this practice. We then make predictions about the potential effects of this form of debating on cognition and emotion. On the basis of initial observations, we propose that successful debating requires skills that include reasoning and critical thinking, attentional focus, working memory, emotion regulation, confidence in your own reasoning skills, and social connectedness. It is therefore likely that the many cumulative hours of debate practice over 20+ years of monastic training helps to cultivate these very skills. Scientific research is needed to examine these hypotheses and determine the role that monastic debate may play in terms of both psychological wellbeing and educational achievement.


Subject(s)
Buddhism/psychology , Emotions/physiology , Interpersonal Relations , Meditation/psychology , Neurosciences/methods , Thinking/physiology , Attention , Humans , Judgment/physiology , Tibet
20.
J Am Soc Nephrol ; 29(6): 1690-1705, 2018 06.
Article in English | MEDLINE | ID: mdl-29739813

ABSTRACT

Background Kidney injury is characterized by persisting inflammation and fibrosis, yet mechanisms by which inflammatory signals drive fibrogenesis remain poorly defined.Methods RNA sequencing of fibrotic kidneys from patients with CKD identified a metabolic gene signature comprising loss of mitochondrial and oxidative phosphorylation gene expression with a concomitant increase in regulators and enzymes of glycolysis under the control of PGC1α and MYC transcription factors, respectively. We modeled this metabolic switch in vivo, in experimental murine models of kidney injury, and in vitro in human kidney stromal cells (SCs) and human kidney organoids.Results In mice, MYC and the target genes thereof became activated in resident SCs early after kidney injury, suggesting that acute innate immune signals regulate this transcriptional switch. In vitro, stimulation of purified human kidney SCs and human kidney organoids with IL-1ß recapitulated the molecular events observed in vivo, inducing functional metabolic derangement characterized by increased MYC-dependent glycolysis, the latter proving necessary to drive proliferation and matrix production. MYC interacted directly with sequestosome 1/p62, which is involved in proteasomal degradation, and modulation of p62 expression caused inverse effects on MYC expression. IL-1ß stimulated autophagy flux, causing degradation of p62 and accumulation of MYC. Inhibition of the IL-1R signal transducer kinase IRAK4 in vivo or inhibition of MYC in vivo as well as in human kidney organoids in vitro abrogated fibrosis and reduced tubular injury.Conclusions Our findings define a connection between IL-1ß and metabolic switch in fibrosis initiation and progression and highlight IL-1ß and MYC as potential therapeutic targets in tubulointerstitial diseases.


Subject(s)
Acute Kidney Injury/pathology , Interleukin-1beta/pharmacology , Kidney/cytology , Kidney/pathology , Proto-Oncogene Proteins c-myc/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Acute Kidney Injury/metabolism , Animals , Autophagy/drug effects , Azepines/pharmacology , Carrier Proteins/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Disease Progression , Extracellular Matrix/metabolism , Fibrosis , Glycolysis/drug effects , Humans , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Kidney Tubules, Proximal/pathology , Male , Membrane Proteins/metabolism , Mice , Organoids , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/genetics , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Signal Transduction , Stromal Cells/metabolism , Thyroid Hormones/metabolism , Triazoles/pharmacology , Thyroid Hormone-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...