Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 123(22): 3390-7, 2014 May 29.
Article in English | MEDLINE | ID: mdl-24615777

ABSTRACT

In a phase 1 trial, idelalisib (GS-1101, CAL-101), a selective inhibitor of the lipid kinase PI3Kδ, was evaluated in 54 patients with relapsed/refractory chronic lymphocytic leukemia (CLL) with adverse characteristics including bulky lymphadenopathy (80%), extensive prior therapy (median 5 [range 2-14] prior regimens), treatment-refractory disease (70%), unmutated IGHV (91%), and del17p and/or TP53 mutations (24%). Patients were treated at 6 dose levels of oral idelalisib (range 50-350 mg once or twice daily) and remained on continuous therapy while deriving clinical benefit. Idelalisib-mediated inhibition of PI3Kδ led to abrogation of Akt phosphorylation in patient CLL cells and significantly reduced serum levels of CLL-related chemokines. The most commonly observed grade ≥3 adverse events were pneumonia (20%), neutropenic fever (11%), and diarrhea (6%). Idelalisib treatment resulted in nodal responses in 81% of patients. The overall response rate was 72%, with 39% of patients meeting the criteria for partial response per IWCLL 2008 and 33% meeting the recently updated criteria of PR with treatment-induced lymphocytosis.(1,2) The median progression-free survival for all patients was 15.8 months. This study demonstrates the clinical utility of inhibiting the PI3Kδ pathway with idelalisib. Our findings support the further development of idelalisib in patients with CLL. These trials were registered at clinicaltrials.gov as #NCT00710528 and #NCT01090414.


Subject(s)
Antineoplastic Agents/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Phosphoinositide-3 Kinase Inhibitors , Purines/therapeutic use , Quinazolinones/therapeutic use , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Purines/administration & dosage , Purines/adverse effects , Purines/pharmacokinetics , Quinazolinones/administration & dosage , Quinazolinones/adverse effects , Quinazolinones/pharmacokinetics , Recurrence , Treatment Outcome
2.
N Engl J Med ; 370(11): 997-1007, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24450857

ABSTRACT

BACKGROUND: Patients with relapsed chronic lymphocytic leukemia (CLL) who have clinically significant coexisting medical conditions are less able to undergo standard chemotherapy. Effective therapies with acceptable side-effect profiles are needed for this patient population. METHODS: In this multicenter, randomized, double-blind, placebo-controlled, phase 3 study, we assessed the efficacy and safety of idelalisib, an oral inhibitor of the delta isoform of phosphatidylinositol 3-kinase, in combination with rituximab versus rituximab plus placebo. We randomly assigned 220 patients with decreased renal function, previous therapy-induced myelosuppression, or major coexisting illnesses to receive rituximab and either idelalisib (at a dose of 150 mg) or placebo twice daily. The primary end point was progression-free survival. At the first prespecified interim analysis, the study was stopped early on the recommendation of the data and safety monitoring board owing to overwhelming efficacy. RESULTS: The median progression-free survival was 5.5 months in the placebo group and was not reached in the idelalisib group (hazard ratio for progression or death in the idelalisib group, 0.15; P<0.001). Patients receiving idelalisib versus those receiving placebo had improved rates of overall response (81% vs. 13%; odds ratio, 29.92; P<0.001) and overall survival at 12 months (92% vs. 80%; hazard ratio for death, 0.28; P=0.02). Serious adverse events occurred in 40% of the patients receiving idelalisib and rituximab and in 35% of those receiving placebo and rituximab. CONCLUSIONS: The combination of idelalisib and rituximab, as compared with placebo and rituximab, significantly improved progression-free survival, response rate, and overall survival among patients with relapsed CLL who were less able to undergo chemotherapy. (Funded by Gilead; ClinicalTrials.gov number, NCT01539512.).


Subject(s)
Antibodies, Monoclonal, Murine-Derived/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Purines/therapeutic use , Quinazolinones/therapeutic use , Aged , Aged, 80 and over , Antibodies, Monoclonal, Murine-Derived/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Disease-Free Survival , Double-Blind Method , Female , Humans , Kaplan-Meier Estimate , Kidney Diseases/complications , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Lymph Nodes/pathology , Male , Middle Aged , Phosphoinositide-3 Kinase Inhibitors , Purines/adverse effects , Quinazolinones/adverse effects , Recurrence , Rituximab
3.
Biomaterials ; 29(34): 4561-73, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18790530

ABSTRACT

Currently available drug-eluting stents (DES) use polymers for coating and releasing drugs. Increasing evidence suggests that inflammatory and hypersensitive reactions are caused by such polymer coatings. This study focused on developing new techniques for delivering drugs directly from metal implant surfaces. Hydroxyl-terminated self-assembled monolayers (SAMs) were coated on Au and Ti surfaces. Therapeutic self-assembled monolayers (TSAMs) were prepared by chemically attaching the model drug, flufenamic acid, to SAM coated metal surfaces. Three different methods of esterification (acid chloride esterification, dry heat esterification, and direct esterification) were explored to attach flufenamic acid to SAMs. TSAMs were characterized using X-ray photoelectron spectroscopy, fluorescence microscopy, atomic force microscopy, and contact angle goniometry. These techniques collectively confirmed the attachment of drug onto SAM coated metal surfaces. In vitro drug release was investigated by immersing TSAM coated metal specimens in tris-buffered saline (TBS) at 37 degrees C for 28 days. TBS was analyzed at 1, 3, 7, 14, 21, and 28 days for the amount of drug eluted using high performance liquid chromatography. Large data scatter was observed for the release profiles of TSAMs prepared by acid chloride esterification. TSAMs prepared by dry heat and direct esterification methods showed an initial burst release of the drug followed by a sustained slow release for up to 2 weeks. Thus, this study suggests the potential for using self-assembled monolayers as an alternate system for delivering drugs from coronary stents and other metal implants.


Subject(s)
Coated Materials, Biocompatible/chemistry , Drug Delivery Systems/methods , Gold/chemistry , Titanium/chemistry , Chromatography, High Pressure Liquid , Drug Delivery Systems/instrumentation , Esterification , Flufenamic Acid/chemistry , Microscopy, Atomic Force , Microscopy, Fluorescence , Spectrum Analysis , Surface Properties , Time Factors
4.
Langmuir ; 24(13): 6774-84, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18512878

ABSTRACT

Methyl- and hydroxyl-terminated phosphonic acid self-assembled monolayers (SAMs) were coated on Ti from aqueous solution. Dodecyl phosphate and dodecyltrichlorosilane SAMs were also coated on Ti using solution-phase deposition. The stability of SAMs on Ti was investigated in Tris-buffered saline (TBS) at 37 degrees C using X-ray photoelectron spectroscopy, contact angle goniometry, and atomic force microscopy. For comparison purposes, a hydroxyl-terminated thiol SAM was coated on Au, and its stability was also investigated under similar conditions. In TBS, a significant proportion of phosphonic acid or phosphate molecules were desorbed from the Ti surface within 1 day, while the trichlorosilane SAM on Ti or thiol SAM on Au was stable for up to 7 days under similar conditions. The stability of hydroxyl-terminated phosphonic acid SAM coated Ti and thiol SAM coated Au was investigated in ambient air and ultraviolet (UV) light. In ambient air, the phosphonic acid SAM on Ti was stable for up to 14 days, while the thiol SAM on Au was not stable for 1 day. Under UV-radiation exposure, the alkyl chains of the phosphonic acid SAM were decomposed, leaving only the phosphonate groups on the Ti surface after 12 h. Under similar conditions, decomposition of alkyl chains of the thiol SAM was observed on the Au surface accompanied by oxidation of thiolates.


Subject(s)
Gold/chemistry , Titanium/chemistry , Buffers , Microscopy, Atomic Force , Spectrum Analysis , Water/chemistry
5.
Curr Top Med Chem ; 8(4): 281-9, 2008.
Article in English | MEDLINE | ID: mdl-18393891

ABSTRACT

Delivery of therapeutic agents from self-assembled monolayers (SAMs) on 316L stainless steel (SS) has been demonstrated as a viable method to deliver drugs for localized coronary artery stent application. SAMs are highly-ordered, nano-sized molecular coatings, adding 1-10 nm thickness to a surface. Hydroxyl terminated alkanethiol SAMs of 11-mercapto-1-undecanol (-OH SAM) were formed on 316L SS with 48 hr immersion in ethanolic solutions. Attachment of ibuprofen (a model drug) to the functional SAMs was carried out in toluene for 5 hrs at 60 degrees C using Novozume-435 as a biocatalyst. SAM formation and subsequent attachment of ibuprofen was characterized collectively using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and contact angle (CA) measure-ments. The quantitative in vitro release of ibuprofen into a "physiological" buffer solution was characterized using reverse phase HPLC. Drug release kinetics showed that 14.1 microg of ibuprofen eluted over a period of 35 days with 2.7microg being eluted in the first day and the remaining being eluted over a period of 35 days. The drug release kinetics showed an increase in ibuprofen elution that occurred during first 14 days (2.7microg in 1 day to 9.5 microg in 14 days), following which there was a decrease in the rate of elution. Thus, functional SAMs on 316L SS could be used as tethers for drug attachment and could serve as a drug delivery mechanism from stainless steel implants such as coronary artery stents.


Subject(s)
Drug Delivery Systems/methods , Drug-Eluting Stents , Nanostructures/chemistry , Pharmaceutical Preparations/administration & dosage , Stainless Steel/chemistry , Chromatography, High Pressure Liquid , Drug-Eluting Stents/standards , Ibuprofen/administration & dosage , Ibuprofen/chemistry , Pharmaceutical Preparations/chemistry , Spectroscopy, Fourier Transform Infrared
6.
Nanomedicine ; 2(3): 182-90, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17292141

ABSTRACT

The use of self-assembled monolayers (SAMs) on medical devices offers a methodology for the incorporation of nanotechnology into medicine. SAMs are highly ordered nanosized molecular coatings, adding 1 to 10 nm thickness to a surface. This work is part of an overall goal to deliver therapeutic drugs from the surface of metal coronary stents using SAMs. In this study the oxidative and in vitro stability of functional alkylthiol SAMs on 316L stainless steel (SS) has been demonstrated. SAMs of 11-mercaptoundecanoic acid (-COOH SAM) and 11-mercapto-1-undecanol (-OH SAM) were formed on 316L SS. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and contact angle (CA) measurements collectively confirmed the formation of functional alkylthiol SAMs on 316L SS. Well-formed SAMs (CA: 82 deg +/- 9 deg) were achieved within 48 hours of immersion in ethanolic solutions, after which no significant improvement in CA was observed. The ratio of the thiolate peak (163.5 eV) to the oxidized sulfur (sulfonates) peak (166.5 eV) gives us an indication of the percentage SAMs that would bind to the metal and serve as a drug reservoir in vivo; which in turn represents the stability and viability of these SAMs, keeping in mind the cardiovascular application under consideration. Oxidative and in vitro stability studies showed that alkanethiol SAMs oxidized completely within 14 days. The SAMs tend to desorb and leave the metal surface after longer time periods (21 days) in phosphate-buffered saline (PBS) immersion, whereas for oxidative exposure the SAMs continue to remain on the metal surface in the form of sulfonates. Although the chemistry of bonding of alkylthiol with the 316L SS is not well understood, the nanosized alkylthiol SAMs demonstrate sufficient stability to justify further study on these systems for potential in vivo drug delivery in the chosen coronary artery stent applications.


Subject(s)
Blood Vessel Prosthesis , Coated Materials, Biocompatible/chemistry , Coronary Vessels/surgery , Nanomedicine/instrumentation , Stainless Steel/chemistry , Stents , Sulfhydryl Compounds/chemistry , Body Fluids , Crystallization/methods , Drug Stability , Equipment Failure Analysis , Materials Testing , Nanomedicine/methods , Oxidation-Reduction , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...