Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38903077

ABSTRACT

Dynein cytoplasmic 1 light intermediate chain 1 (LIC1, DYNC1LI1) is a core subunit of the dynein motor complex. The LIC1 subunit also interacts with various cargo adaptors to regulate Rab-mediated endosomal recycling and lysosomal degradation. Defects in this gene are predicted to alter dynein motor function, Rab binding capabilities, and cytoplasmic cargo trafficking. Here, we have identified a dync1li1 zebrafish mutant, harboring a premature stop codon at the exon 12/13 splice acceptor site, that displays increased angiogenesis. In vitro, LIC1-deficient human endothelial cells display increases in cell surface levels of the pro-angiogenic receptor VEGFR2, SRC phosphorylation, and Rab11-mediated endosomal recycling. In vivo, endothelial-specific expression of constitutively active Rab11a leads to excessive angiogenesis, similar to the dync1li1 mutants. Increased angiogenesis is also evident in zebrafish harboring mutations in rilpl1/2, the adaptor proteins that promote Rab docking to Lic1 to mediate lysosomal targeting. These findings suggest that LIC1 and the Rab-adaptor proteins RILPL1 and 2 restrict angiogenesis by promoting degradation of VEGFR2-containing recycling endosomes. Disruption of LIC1- and RILPL1/2-mediated lysosomal targeting increases Rab11-mediated recycling endosome activity, promoting excessive SRC signaling and angiogenesis.

2.
J Inherit Metab Dis ; 46(4): 720-734, 2023 07.
Article in English | MEDLINE | ID: mdl-37078466

ABSTRACT

Late-infantile neuronal ceroid lipofuscinosis (LINCL) and juvenile neuronal ceroid lipofuscinosis (JNCL) are inherited neurodegenerative diseases caused by mutations in the genes encoding lysosomal proteins tripeptidyl peptidase 1 (TPP1) and CLN3 protein, respectively. TPP1 is well-understood and, aided by animal models that accurately recapitulate the human disease, enzyme replacement therapy has been approved and other promising therapies are emerging. In contrast, there are no effective treatments for JNCL, partly because the function of the CLN3 protein remains unknown but also because animal models have attenuated disease and lack robust survival phenotypes. Mouse models for LINCL and JNCL, with mutations in Tpp1 and Cln3, respectively, have been thoroughly characterized but the phenotype of a double Cln3/Tpp1 mutant remains unknown. We created this double mutant and find that its phenotype is essentially indistinguishable from the single Tpp1-/- mutant in terms of survival and brain pathology. Analysis of brain proteomic changes in the single Tpp1-/- and double Cln3-/- ;Tpp1-/- mutants indicates largely overlapping sets of altered proteins and reinforces earlier studies that highlight GPNMB, LYZ2, and SERPINA3 as promising biomarker candidates in LINCL while several lysosomal proteins including SMPD1 and NPC1 appear to be altered in the Cln3-/- animals. An unexpected finding was that Tpp1 heterozygosity significantly decreased lifespan of the Cln3-/- mouse. The truncated survival of this mouse model makes it potentially useful in developing therapies for JNCL using survival as an endpoint. In addition, this model may also provide insights into CLN3 protein function and its potential functional interactions with TPP1.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Tripeptidyl-Peptidase 1 , Animals , Mice , Brain/pathology , Disease Models, Animal , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Molecular Chaperones/genetics , Mutation , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...