Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Med ; 201: 106943, 2022 09.
Article in English | MEDLINE | ID: mdl-35947933

ABSTRACT

BACKGROUND: Shortened telomeres are associated with several different subtypes of interstitial lung disease (ILD), although studies of telomere length and ILD in rheumatoid arthritis (RA) are lacking. METHODS: Within the Veterans Affairs Rheumatoid Arthritis (VARA) registry, we performed cross-sectional and case-control studies of prevalent and incident ILD, respectively. We randomly selected a subset of RA patients with ILD and individually matched them to RA patients without ILD according to age, sex, and VARA enrollment date. Telomere length was measured on peripheral blood leukocytes collected at registry enrollment using quantitative PCR (T/S ratio). Short telomeres were defined as a T/S ratio in the lowest 10th percentile of the cohort. RESULTS: Our cross-sectional study cohort was comprised of 54 RA-ILD patients and 92 RA-non-ILD patients. T/S ratios significantly differed between patients with and without prevalent ILD (1.56 [IQR 1.30, 1.78] vs. 1.96 [IQR 1.65, 2.27], p < 0.001). Similarly, prevalence of ILD was significantly higher in patients with short vs. normal-length telomeres (73.3% vs. 32.8%, p = 0.002). Short telomeres were independently associated with an increased odds of prevalent ILD compared to normal-length telomeres (adjusted OR 6.60, 95% CI 1.78-24.51, p = 0.005). In our case-control analysis, comprised of 22 incident RA-ILD cases and 36 RA-non-ILD controls, short telomeres were not associated with incident RA-ILD (adjusted OR 0.90, 95% CI 0.06-13.4, p = 0.94). CONCLUSION: Short telomeres were strongly associated with prevalent but not incident ILD among patients with RA. Additional studies are needed to better understand telomere length dynamics among RA patients with and without ILD.


Subject(s)
Arthritis, Rheumatoid , Lung Diseases, Interstitial , Veterans , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/epidemiology , Arthritis, Rheumatoid/genetics , Cross-Sectional Studies , Female , Humans , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/genetics , Male , Telomere/genetics , Telomere Shortening
2.
Sci Signal ; 14(714): eaba2611, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34932373

ABSTRACT

Cytokine production is a critical component of cell-extrinsic responses to DNA damage and cellular senescence. Here, we demonstrated that expression of the gene encoding interleukin-19 (IL-19) was enhanced by DNA damage through pathways mediated by c-Jun amino-terminal kinase (JNK) and cGAS-STING and that IL19 expression was required for the subsequent production of the cytokines IL-1, IL-6, and IL-8. IL19 expression was stimulated by diverse cellular stresses, including inhibition of the DNA replication checkpoint kinase ATR (ataxia telangiectasia and Rad3-related protein), oncogene expression, replicative exhaustion, oxidative stress, and DNA double-strand breaks. Unlike the production of IL-6 and IL-8, IL19 expression was not affected by abrogation of signaling by the IL-1 receptor (IL-1R) or the mitogen-activated protein kinase p38. Instead, the DNA damage­induced production of IL-1, IL-6, and IL-8 was substantially reduced by suppression of IL19 expression. The signaling pathways required to stimulate IL19 expression selectively depended on the type of DNA-damaging agent. Reactive oxygen species and the ASK1-JNK pathway were critical for responses to ionizing radiation (IR), whereas the cGAS-STING pathway stimulated IL19 expression in response to either IR or ATR inhibition. Whereas induction of IL1, IL6, and IL8 by IR depended on IL19 expression, the cGAS-STING­dependent induction of the immune checkpoint gene PDL1 after IR and ATR inhibition was independent of IL19. Together, these results suggest that IL-19 production by diverse pathways forms a distinct cytokine regulatory arm of the response to DNA damage.


Subject(s)
DNA Damage , Interleukins/metabolism , Membrane Proteins , Signal Transduction , Animals , Cytokines/genetics , MAP Kinase Signaling System , Membrane Proteins/genetics , Mice , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
3.
Transpl Immunol ; 65: 101377, 2021 04.
Article in English | MEDLINE | ID: mdl-33610677

ABSTRACT

Vascularized composite allografts may be more susceptible to rejection than other types of organ transplants, particularly in sensitized recipients. We describe a successful transatlantic bilateral hand transplant in a 40-year old woman who was highly sensitized to class II HLA antigens including HLA-DPB1 (UNet CPRA = 86%). Prior to transplantation, we selected an upper limb donor based on HLA class II matching and absence of donor specific antibodies, given evidence that class II mismatches are associated with acute cellular rejection in hand transplants. The patient was conditioned using five doses of thymoglobulin, and her immunosuppression included tacrolimus, rapamycin, mycophenolate, and prednisone. Post-transplant, the patient non-DSA anti-HLA antibody levels drastically increased, but only transiently and weak DSAs developed, which became undetectable by two months posttransplant. Following transplantation, periodic biopsies over 6 months indicated no evidence of rejection except for transient Banff grade 1 and one sample with grade 2 acute rejection. There was no evidence of rejection on her recent 1-year follow-up. The patient is currently healthy, has recovered protective sensibility, and is regaining excellent function. This case highlights the importance of pre-transplantation planning, donor selection/compatibility, and ethical considerations in the ultimate success of VCA.


Subject(s)
Hand Transplantation , Adult , Female , Graft Rejection , Graft Survival , HLA Antigens , Histocompatibility Antigens Class II , Humans , Tacrolimus
4.
Sci Immunol ; 6(55)2021 01 15.
Article in English | MEDLINE | ID: mdl-33452106

ABSTRACT

The developmental origins of memory T cells remain incompletely understood. During the expansion phase of acute viral infection, we identified a distinct subset of virus-specific CD8+ T cells that possessed distinct characteristics including expression of CD62L, T cell factor 1 (TCF-1), and Eomesodermin; relative quiescence; expression of activation markers; and features of limited effector differentiation. These cells were a quantitatively minor subpopulation of the TCF-1+ pool and exhibited self-renewal, heightened DNA damage surveillance activity, and preferential long-term recall capacity. Despite features of memory and somewhat restrained proliferation during the expansion phase, this subset displayed evidence of stronger TCR signaling than other responding CD8+ T cells, coupled with elevated expression of multiple inhibitory receptors including programmed cell death 1 (PD-1), lymphocyte activating gene 3 (LAG-3), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), CD5, and CD160. Genetic ablation of PD-1 and LAG-3 compromised the formation of this CD62Lhi TCF-1+ subset and subsequent CD8+ T cell memory. Although central memory phenotype CD8+ T cells were formed in the absence of these cells, subsequent memory CD8+ T cell recall responses were compromised. Together, these results identify an important link between genome integrity maintenance and CD8+ T cell memory. Moreover, the data indicate a role for inhibitory receptors in preserving key memory CD8+ T cell precursors during initial activation and differentiation. Identification of this rare subpopulation within the memory CD8+ T cell precursor pool may help reconcile models of the developmental origin of long-term CD8+ T cell memory.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Listeriosis/immunology , Lymphocytic Choriomeningitis/immunology , Memory T Cells/immunology , Precursor Cells, T-Lymphoid/immunology , Animals , Antigens, CD/genetics , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , DNA Damage/immunology , Disease Models, Animal , Female , Hepatocyte Nuclear Factor 1-alpha/metabolism , Humans , Immunologic Memory/genetics , Listeria monocytogenes/immunology , Listeriosis/microbiology , Lymphocyte Activation , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Male , Memory T Cells/metabolism , Mice , Mice, Knockout , Precursor Cells, T-Lymphoid/metabolism , Programmed Cell Death 1 Receptor/genetics , Lymphocyte Activation Gene 3 Protein
5.
Mol Cell ; 73(4): 684-698.e8, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30773298

ABSTRACT

Accumulation of senescent cells during aging contributes to chronic inflammation and age-related diseases. While senescence is associated with profound alterations of the epigenome, a systematic view of epigenetic factors in regulating senescence is lacking. Here, we curated a library of short hairpin RNAs for targeted silencing of all known epigenetic proteins and performed a high-throughput screen to identify key candidates whose downregulation can delay replicative senescence of primary human cells. This screen identified multiple new players including the histone acetyltransferase p300 that was found to be a primary driver of the senescent phenotype. p300, but not the paralogous CBP, induces a dynamic hyper-acetylated chromatin state and promotes the formation of active enhancer elements in the non-coding genome, leading to a senescence-specific gene expression program. Our work illustrates a causal role of histone acetyltransferases and acetylation in senescence and suggests p300 as a potential therapeutic target for senescence and age-related diseases.


Subject(s)
Cell Proliferation , Cellular Senescence , Chromatin Assembly and Disassembly , Chromatin/enzymology , Fibroblasts/enzymology , Histones/metabolism , Protein Processing, Post-Translational , p300-CBP Transcription Factors/metabolism , Acetylation , Cell Proliferation/genetics , Cellular Senescence/genetics , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , Epigenetic Repression , HEK293 Cells , High-Throughput Nucleotide Sequencing/methods , Histones/genetics , Humans , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Time Factors , Transcription, Genetic , p300-CBP Transcription Factors/genetics
6.
PLoS One ; 13(11): e0206897, 2018.
Article in English | MEDLINE | ID: mdl-30427907

ABSTRACT

Telomeres protect against chromosomal damage. Accelerated telomere loss has been associated with premature aging syndromes such as Werner's syndrome and Dyskeratosis Congenita, while, progressive telomere loss activates a DNA damage response leading to chromosomal instability, typically observed in cancer cells and senescent cells. Therefore, identifying mechanisms of telomere length maintenance is critical for understanding human pathologies. In this paper we demonstrate that mitochondrial dysfunction plays a causal role in telomere shortening. Furthermore, hnRNPA2, a mitochondrial stress responsive lysine acetyltransferase (KAT) acetylates telomere histone H4at lysine 8 of (H4K8) and this acetylation is associated with telomere attrition. Cells containing dysfunctional mitochondria have higher telomere H4K8 acetylation and shorter telomeres independent of cell proliferation rates. Ectopic expression of KAT mutant hnRNPA2 rescued telomere length possibly due to impaired H4K8 acetylation coupled with inability to activate telomerase expression. The phenotypic outcome of telomere shortening in immortalized cells included chromosomal instability (end-fusions) and telomerase activation, typical of an oncogenic transformation; while in non-telomerase expressing fibroblasts, mitochondrial dysfunction induced-telomere attrition resulted in senescence. Our findings provide a mechanistic association between dysfunctional mitochondria and telomere loss and therefore describe a novel epigenetic signal for telomere length maintenance.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Histones/metabolism , Mitochondria/metabolism , Telomere Shortening/genetics , Telomere/metabolism , Acetylation , Animals , Cell Line , Cell Transformation, Neoplastic/genetics , Chromosomal Instability/physiology , Epigenesis, Genetic/physiology , Fibroblasts , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Humans , Lysine/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Mutagenesis, Site-Directed , Mutation , Telomerase/metabolism
7.
Am J Pathol ; 187(8): 1787-1799, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28627413

ABSTRACT

Esophagitis, whether caused by acid reflux, allergic responses, graft-versus-host disease, drugs, or infections, is a common condition of the gastrointestinal tract affecting nearly 20% of the US population. The instigating agent typically triggers an inflammatory response. The resulting inflammation is a risk factor for the development of esophageal strictures, Barrett esophagus, and esophageal adenocarcinoma. Research into the pathophysiology of these conditions has been limited by the availability of animal and human model systems. Three-dimensional organotypic tissue culture (OTC) is an innovative three-dimensional multicellular in vitro platform that recapitulates normal esophageal epithelial stratification and differentiation. We hypothesized that this platform can be used to model esophagitis to better understand the interactions between immune cells and the esophageal epithelium. We found that human immune cells remain viable and respond to cytokines when cultured under OTC conditions. The acute inflammatory environment induced in the OTC significantly affected the overlying epithelium, inducing a regenerative response marked by increased cell proliferation and epithelial hyperplasia. Moreover, oxidative stress from the acute inflammation induced DNA damage and strand breaks in epithelial cells, which could be reversed by antioxidant treatment. These findings support the importance of immune cell-mediated esophageal injury in esophagitis and confirms the utility of the OTC platform to characterize the underlying molecular events in esophagitis.


Subject(s)
Cell Culture Techniques/methods , Esophagitis/pathology , Esophagus/pathology , Cell Line , Esophagitis/immunology , Esophagus/immunology , Humans , Inflammation/immunology , Inflammation/pathology , Oxidative Stress/physiology
8.
EMBO J ; 31(1): 58-70, 2012 Jan 04.
Article in English | MEDLINE | ID: mdl-22020126

ABSTRACT

The MYST protein lysine acetyltransferases are evolutionarily conserved throughout eukaryotes and acetylate proteins to regulate diverse biological processes including gene regulation, DNA repair, cell-cycle regulation, stem cell homeostasis and development. Here, we demonstrate that MYST protein acetyltransferase activity requires active site lysine autoacetylation. The X-ray crystal structures of yeast Esa1 (yEsa1/KAT5) bound to a bisubstrate H4K16CoA inhibitor and human MOF (hMOF/KAT8/MYST1) reveal that they are autoacetylated at a strictly conserved lysine residue in MYST proteins (yEsa1-K262 and hMOF-K274) in the enzyme active site. The structure of hMOF also shows partial occupancy of K274 in the unacetylated form, revealing that the side chain reorients to a position that engages the catalytic glutamate residue and would block cognate protein substrate binding. Consistent with the structural findings, we present mass spectrometry data and biochemical experiments to demonstrate that this lysine autoacetylation on yEsa1, hMOF and its yeast orthologue, ySas2 (KAT8) occurs in solution and is required for acetylation and protein substrate binding in vitro. We also show that this autoacetylation occurs in vivo and is required for the cellular functions of these MYST proteins. These findings provide an avenue for the autoposttranslational regulation of MYST proteins that is distinct from other acetyltransferases but draws similarities to the phosphoregulation of protein kinases.


Subject(s)
Histone Acetyltransferases/metabolism , Lysine/genetics , Acetylation , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Histone Acetyltransferases/genetics , Histones/metabolism , Humans , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
9.
Thromb Haemost ; 91(6): 1123-8, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15175798

ABSTRACT

Two cytochrome P450 2C9 (CYP2C9) polymorphisms, CYP2C9*2 and *3, metabolize warfarin inefficiently. We assessed the extent to which these polymorphisms explain very low warfarin dose requirements and hemorrhagic complications after excluding non-genetic determinants of warfarin dosing. In this retrospective observational study, 73 patients with stable warfarin doses for > or =1 month and International Normalized Ratios (INR) of 2.0-3.0 were enrolled from our Anticoagulation Clinic. Seventeen patients required < or =2 mg (low-dose), 41 required 4-6 mg (moderate-dose), and 15 required > or =10 mg (high-dose) of daily warfarin. CYP2C9 genotyping was assessed by PCR amplification and restriction enzyme digestion analysis of DNA isolated from circulating leukocytes. The CYP2C9 polymorphisms independently predicted low warfarin requirements after adjusting for Body Mass Index, age, acetaminophen use, and race (OR 24.80; 95% CI 3.83-160.78). At least one polymorphism was present in every patient requiring < or =1.5 mg of daily warfarin, and 88%, 37%, and 7% of the low-, moderate-, and high-dose groups, respectively. All homozygotes and compound-heterozygotes for the variant alleles were in the low-dose group. Rates of excessive (INR>6.0) anticoagulation (and bleeding) were 4.5 (6.0), 7.9 (7.9), and 14.7 (0) per 100 patient-years in the wild-types, heterozygotes, and compound heterozygotes/homozygotes, respectively. In conclusion, CYP2C9*2 or *3 compound heterozygotes and homozygotes have low warfarin requirements even after excluding liver disease, excessive alcohol or acetaminophen consumption, low body weight, advancing age, and drug interactions. These polymorphisms increase the rate of excessive anticoagulation, but this risk does not appear to be associated with higher bleeding rates when anticoagulation status is closely monitored.


Subject(s)
Aryl Hydrocarbon Hydroxylases/genetics , Polymorphism, Genetic , Warfarin/administration & dosage , Adult , Aged , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 CYP2C9 , DNA Mutational Analysis , Dose-Response Relationship, Drug , Female , Genotype , Hemorrhage/chemically induced , Hemorrhage/genetics , Humans , Male , Middle Aged , Pharmacogenetics/statistics & numerical data , Predictive Value of Tests , Regression Analysis , Retrospective Studies , Warfarin/adverse effects , Warfarin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...