Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(9): e0273182, 2022.
Article in English | MEDLINE | ID: mdl-36067171

ABSTRACT

Inducing senescence in cancer cells is emerging as a new therapeutic strategy. In order to find ways to enhance senescence induction by palbociclib, a CDK4/6 inhibitor approved for treatment of metastatic breast cancer, we performed functional genetic screens in palbociclib-resistant cells. Using this approach, we found that loss of CDK2 results in strong senescence induction in palbociclib-treated cells. Treatment with the CDK2 inhibitor indisulam, which phenocopies genetic CDK2 inactivation, led to sustained senescence induction when combined with palbociclib in various cell lines and lung cancer xenografts. Treating cells with indisulam led to downregulation of cyclin H, which prevented CDK2 activation. Combined treatment with palbociclib and indisulam induced a senescence program and sensitized cells to senolytic therapy. Our data indicate that inhibition of CDK2 through indisulam treatment can enhance senescence induction by CDK4/6 inhibition.


Subject(s)
Cyclin-Dependent Kinase 6 , Protein Kinase Inhibitors , Cell Line, Tumor , Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Humans , Piperazines , Protein Kinase Inhibitors/pharmacology , Pyridines , Sulfonamides
2.
Biochem Res Int ; 2012: 940405, 2012.
Article in English | MEDLINE | ID: mdl-22928112

ABSTRACT

Despite significant advances in the detection and treatment of lung cancer, it causes the highest number of cancer-related mortality. Recent advances in the detection of genetic alterations in patient samples along with physiologically relevant animal models has yielded a new understanding of the molecular etiology of lung cancer. This has facilitated the development of potent and specific targeted therapies, based on the genetic and biochemical alterations present in the tumor, especially non-small-cell lung cancer (NSCLC). It is now clear that heterogeneous cell signaling pathways are disrupted to promote NSCLC, including mutations in critical growth regulatory proteins (K-Ras, EGFR, B-RAF, MEK-1, HER2, MET, EML-4-ALK, KIF5B-RET, and NKX2.1) and inactivation of growth inhibitory pathways (TP53, PTEN, p16, and LKB-1). How these pathways differ between smokers and non-smokers is also important for clinical treatment strategies and development of targeted therapies. This paper describes these molecular targets in NSCLC, and describes the biological significance of each mutation and their potential to act as a therapeutic target.

3.
Cancer Res ; 72(2): 516-26, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22086850

ABSTRACT

The retinoblastoma (Rb)-E2F transcriptional regulatory pathway plays a major role in cell-cycle regulation, but its role in invasion and metastasis is less well understood. We find that many genes involved in the invasion of cancer cells, such as matrix metalloproteinases (MMP), have potential E2F-binding sites in their promoters. E2F-binding sites were predicted on all 23 human MMP gene promoters, many of which harbored multiple E2F-binding sites. Studies presented here show that MMP genes such as MMP9, MMP14, and MMP15 which are overexpressed in non-small cell lung cancer, have multiple E2F-binding sites and are regulated by the Rb-E2F pathway. Chromatin immunoprecipitation assays showed the association of E2F1 with the MMP9, MMP14, and MMP15 promoters, and transient transfection experiments showed that these promoters are E2F responsive. Correspondingly, depletion of E2F family members by RNA interference techniques reduced the expression of these genes with a corresponding reduction in collagen degradation activity. Furthermore, activating Rb by inhibiting the interaction of Raf-1 with Rb by using the Rb-Raf-1 disruptor RRD-251 was sufficient to inhibit MMP transcription. This led to reduced invasion and migration of cancer cells in vitro and metastatic foci development in a tail vein lung metastasis model in mice. These results suggest that E2F transcription factors may play a role in promoting metastasis through regulation of MMP genes and that targeting the Rb-Raf-1 interaction is a promising approach for the treatment of metastatic disease.


Subject(s)
E2F Transcription Factors/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Matrix Metalloproteinases/genetics , Phosphatidylethanolamine Binding Protein/metabolism , Retinoblastoma Protein/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , E2F Transcription Factors/metabolism , Enzyme Assays/methods , Female , Gelatin/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Matrix Metalloproteinases/biosynthesis , Matrix Metalloproteinases/metabolism , Mice , Mice, SCID , Neoplasm Metastasis , Retinoblastoma Protein/genetics , Transcription, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...