Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Metab ; 34(2): 256-268.e5, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35108513

ABSTRACT

In diabetes, glucagon secretion from pancreatic α cells is dysregulated. The underlying mechanisms, and whether dysfunction occurs uniformly among cells, remain unclear. We examined α cells from human donors and mice using electrophysiological, transcriptomic, and computational approaches. Rising glucose suppresses α cell exocytosis by reducing P/Q-type Ca2+ channel activity, and this is disrupted in type 2 diabetes (T2D). Upon high-fat feeding of mice, α cells shift toward a "ß cell-like" electrophysiological profile in concert with indications of impaired identity. In human α cells we identified links between cell membrane properties and cell surface signaling receptors, mitochondrial respiratory chain complex assembly, and cell maturation. Cell-type classification using machine learning of electrophysiology data demonstrated a heterogenous loss of "electrophysiologic identity" in α cells from donors with type 2 diabetes. Indeed, a subset of α cells with impaired exocytosis is defined by an enrichment in progenitor and lineage markers and upregulation of an immature transcriptomic phenotype, suggesting important links between α cell maturation state and dysfunction.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Secreting Cells , Islets of Langerhans , Animals , Diabetes Mellitus, Type 2/metabolism , Exocytosis/physiology , Glucagon/metabolism , Glucagon-Secreting Cells/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Mice
2.
Channels (Austin) ; 15(1): 360-374, 2021 12.
Article in English | MEDLINE | ID: mdl-33825665

ABSTRACT

Vitamin D is known to elicit many biological effects in diverse tissue types and is thought to act almost exclusively upon its canonical receptor within the nucleus, leading to gene transcriptional changes and the subsequent cellular response. However, not all the observed effects of vitamin D can be attributed to this sole mechanism, and other cellular targets likely exist but remain to be identified. Our recent discovery that vitamin D is a partial agonist of the Transient Receptor Potential Vanilloid family 1 (TRPV1) channel may provide new insights as to how this important vitamin exerts its biological effects either independently or in addition to the nuclear vitamin D receptor. In this review, we discuss the literature surrounding this apparent discrepancy in vitamin D signaling and compare vitamin D with known TRPV1 ligands with respect to their binding to TRPV1. Furthermore, we provide evidence supporting the notion that this novel vitamin D/TRPV1 axis may explain some of the beneficial actions of this vitamin in disease states where TRPV1 expression and vitamin D deficiency are known to overlap. Finally, we discuss whether vitamin D may also act on other members of the TRP family of ion channels.


Subject(s)
Vitamin D , Capsaicin , Pain , TRPV Cation Channels , Transient Receptor Potential Channels
3.
Islets ; 13(1-2): 32-50, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33724156

ABSTRACT

Glucagon-Like Peptide-1 (GLP-1) is an important peptide hormone secreted by L-cells in the gastrointestinal tract in response to nutrients. It is produced by the differential cleavage of the proglucagon peptide. GLP-1 elicits a wide variety of physiological responses in many tissues that contribute to metabolic homeostasis. For these reasons, therapies designed to either increase endogenous GLP-1 levels or introduce exogenous peptide mimetics are now widely used in the management of diabetes. In addition to GLP-1 production from L-cells, recent reports suggest that pancreatic islet alpha cells may also synthesize and secrete GLP-1. Intra-islet GLP-1 may therefore play an unappreciated role in islet health and glucose regulation, suggesting a potential functional paracrine role for islet-derived GLP-1. In this review, we assess the current literature from an islet-centric point-of-view to better understand the production, degradation, and actions of GLP-1 within the endocrine pancreas in rodents and humans. The relevance of intra-islet GLP-1 in human physiology is discussed regarding the potential role of intra-islet GLP-1 in islet health and dysfunction.


Subject(s)
Glucagon-Like Peptide 1/physiology , Glucagon-Secreting Cells , Islets of Langerhans , Glucagon , Glucose , Humans
4.
Mol Metab ; 39: 101014, 2020 09.
Article in English | MEDLINE | ID: mdl-32413586

ABSTRACT

OBJECTIVES: Our study shows that glucagon-like peptide-1 (GLP-1) is secreted within human islets and may play an unexpectedly important paracrine role in islet physiology and pathophysiology. It is known that α cells within rodent and human pancreatic islets are capable of secreting GLP-1, but little is known about the functional role that islet-derived GLP-1 plays in human islets. METHODS: We used flow cytometry, immunohistochemistry, perifusions, and calcium imaging techniques to analyse GLP-1 expression and function in islets isolated from cadaveric human donors with or without type 2 diabetes. We also used immunohistochemistry to analyse GLP-1 expression within islets from pancreatic biopsies obtained from living donors. RESULTS: We have demonstrated that human islets secrete ∼50-fold more GLP-1 than murine islets and that ∼40% of the total human α cells contain GLP-1. Our results also confirm that dipeptidyl peptidase-4 (DPP4) is expressed in α cells. Sitagliptin increased GLP-1 secretion from cultured human islets but did not enhance glucose-stimulated insulin secretion (GSIS) in islets from non-diabetic (ND) or type 2 diabetic (T2D) donors, suggesting that ß cell GLP-1 receptors (GLP-1R) may already be maximally activated. Therefore, we tested the effects of exendin-9, a GLP-1R antagonist. Exendin-9 was shown to reduce GSIS by 39% and 61% in ND islets and T2D islets, respectively. We also observed significantly more GLP-1+ α cells in T2D islets compared with ND islets obtained from cadaveric donors. Furthermore, GLP-1+ α cells were also identified in pancreatic islet sections obtained from living donors undergoing surgery. CONCLUSIONS: In summary, we demonstrated that human islets secrete robust amounts of GLP-1 from an α cell subpopulation and that GLP-1R signalling may support GSIS to a greater extent in T2D islets.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/biosynthesis , Glucagon-Secreting Cells/metabolism , Islets of Langerhans/metabolism , Animals , Biomarkers , Diabetes Mellitus, Type 2/etiology , Gene Expression , Glucagon/metabolism , Glucagon-Like Peptide 1/genetics , Glucose/metabolism , Humans , Immunophenotyping , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Islets of Langerhans/cytology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...