Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Aging Biol ; 22024.
Article in English | MEDLINE | ID: mdl-38550776

ABSTRACT

Continuous methionine restriction (MR) is one of only a few dietary interventions known to dramatically extend mammalian healthspan. For example, continuously methionine-restricted rodents show less age-related pathology and are up to 45% longer-lived than controls. Intriguingly, MR is feasible for humans, andanumberofstudieshavesuggestedthatmethionine-restrictedindividualsmayreceivesimilarhealthspan benefits as rodents. However, long-term adherence to a continuously methionine-restricted diet is likely to be challenging (or even undesirable) for many individuals. To address this, we previously developed an intermittent version of MR (IMR) and demonstrated that it confers nearly identical metabolic health benefits to mice as the continuous intervention, despite having a relatively short interventional period (i.e., only three days per week). We also observed that female mice undergoing IMR show a more pronounced amelioration of diet-induced dysglycemia than continuously methionine-restricted counterparts, while male mice undergoing IMR retain more lean body mass as compared with continuously methionine-restricted controls. Prompted by such findings, we sought to determine other ways in which IMR might compare favorably with continuous MR. While it is known that continuous MR has deleterious effects on bone in mice, including loss of both trabecular and cortical bone, we considered that mice undergoing IMR might retain more bone mass. Here, we report that, as compared with continuous MR, IMR results in a preservation of both trabecular and cortical bone, as well as a dramatic reduction in the accumulation of marrow fat. Consistent with such findings, mechanical testing revealed that the bones of intermittently methionine-restricted mice are significantly stronger than those of mice subjected to the continuous intervention. Finally, static histomorphometric analyses suggest that IMR likely results in more bone mass than that produced by continuous MR, primarily by increasing the number of osteoblasts. Together, our results demonstrate that the more practicable intermittent form of MR not only confers similar metabolic health benefits to the continuous intervention but does so without markedly deleterious effects on either the amount or strength of bone. These data provide further support for the use of IMR in humans.

2.
Aging Cell ; 21(6): e13629, 2022 06.
Article in English | MEDLINE | ID: mdl-35570387

ABSTRACT

A sustained state of methionine restriction (MR) dramatically extends the healthspan of several model organisms. For example, continuously methionine-restricted rodents have less age-related pathology and are up to 45% longer-lived than controls. Promisingly, MR is feasible for humans, and studies have suggested that methionine-restricted individuals may receive similar benefits to rodents. However, long-term adherence to a methionine-restricted diet is likely to be challenging for many individuals. Prompted by this, and the fact that intermittent variants of other healthspan-extending interventions (i.e., intermittent fasting and the cyclic ketogenic diet) are just as effective, if not more, than their continuous counterparts, we hypothesized that an intermittent form of MR might produce similar healthspan benefits to continuous MR. Accordingly, we developed two increasingly stringent forms of intermittent MR (IMR) and assessed whether mice maintained on these diets demonstrate the beneficial metabolic changes typically observed for continuous MR. To the best of our knowledge, we show for the first time that IMR produces similar beneficial metabolic effects to continuous MR, including improved glucose homeostasis and protection against diet-induced obesity and hepatosteatosis. In addition, like continuous MR, IMR confers beneficial changes in the plasma levels of the hormones IGF-1, FGF-21, leptin, and adiponectin. Together, our findings demonstrate that the more practicable intermittent form of MR produces similar healthspan benefits to continuous MR, and thus may represent a more appealing alternative to the classical intervention.


Subject(s)
Insulin-Like Growth Factor I , Methionine , Adiponectin , Animals , Diet , Insulin-Like Growth Factor I/metabolism , Methionine/metabolism , Mice , Obesity/metabolism
3.
Elife ; 102021 03 30.
Article in English | MEDLINE | ID: mdl-33783357

ABSTRACT

Methionine restriction (MR) dramatically extends the healthspan of several organisms. Methionine-restricted rodents have less age-related pathology and increased longevity as compared with controls, and recent studies suggest that humans might benefit similarly. Mechanistically, it is likely that the decreased IGF-1 signaling that results from MR underlies the benefits of this regimen. Thus, we hypothesized that interventions that decrease IGF-1 signaling would also produce MR-like healthspan benefits. Selenium supplementation inhibits IGF-1 signaling in rats and has been studied for its putative healthspan benefits. Indeed, we show that feeding mice a diet supplemented with sodium selenite results in an MR-like phenotype, marked by protection against diet-induced obesity, as well as altered plasma levels of IGF-1, FGF-21, adiponectin, and leptin. Selenomethionine supplementation results in a similar, albeit less robust response, and also extends budding yeast lifespan. Our results indicate that selenium supplementation is sufficient to produce MR-like healthspan benefits for yeast and mammals.


Subject(s)
Insulin-Like Growth Factor I/genetics , Methionine/administration & dosage , Mice/physiology , Selenium/metabolism , Selenomethionine/metabolism , Sodium Selenite/metabolism , Animal Feed/analysis , Animals , Diet , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Female , Insulin-Like Growth Factor I/metabolism , Male , Mice, Inbred C57BL , Random Allocation , Selenium/administration & dosage , Selenomethionine/administration & dosage , Sodium Selenite/administration & dosage
4.
Front Cell Dev Biol ; 7: 301, 2019.
Article in English | MEDLINE | ID: mdl-31850341

ABSTRACT

Methionine restriction (MR) is one of only a few dietary manipulations known to robustly extend healthspan in mammals. For example, rodents fed a methionine-restricted diet are up to 45% longer-lived than control-fed animals. Tantalizingly, ongoing studies suggest that humans could enjoy similar benefits from this intervention. While the benefits of MR are likely due, at least in part, to improved cellular stress tolerance, it remains to be determined exactly how MR extends organismal healthspan. In previous work, we made use of the yeast chronological lifespan (CLS) assay to model the extension of cellular lifespan conferred by MR and explore the genetic requirements for this extension. In these studies, we demonstrated that both dietary MR (D-MR) and genetic MR (G-MR) (i.e., impairment of the cell's methionine biosynthetic machinery) significantly extend the CLS of yeast. This extension was found to require the mitochondria-to-nucleus retrograde (RTG) stress signaling pathway, and was associated with a multitude of gene expression changes, a significant proportion of which was also dependent on RTG signaling. Here, we show work aimed at understanding how a subset of the observed expression changes are causally related to MR-dependent CLS extension. Specifically, we find that multiple autophagy-related genes are upregulated by MR, likely resulting in an increased autophagic capacity. Consistent with activated autophagy being important for the benefits of MR, we also find that loss of any of several core autophagy factors abrogates the extended CLS observed for methionine-restricted cells. In addition, epistasis analyses provide further evidence that autophagy activation underlies the benefits of MR to yeast. Strikingly, of the many types of selective autophagy known, our data clearly demonstrate that MR-mediated CLS extension requires only the autophagic recycling of mitochondria (i.e., mitophagy). Indeed, we find that functional mitochondria are required for the full benefit of MR to CLS. Finally, we observe substantial alterations in carbon metabolism for cells undergoing MR, and provide evidence that such changes are directly responsible for the extended lifespan of methionine-restricted yeast. In total, our data indicate that MR produces changes in carbon metabolism that, together with the oxidative metabolism of mitochondria, result in extended cellular lifespan.

5.
Ann N Y Acad Sci ; 1418(1): 31-43, 2018 04.
Article in English | MEDLINE | ID: mdl-29363766

ABSTRACT

The goal of the aging field is to develop novel therapeutic interventions that extend human health span and reduce the burden of age-related disease. While organismal aging is a complex, multifactorial process, a popular theory is that cellular aging is a significant contributor to the progressive decline inherent to all multicellular organisms. To explore the molecular determinants that drive cellular aging, as well as how to retard them, researchers have utilized the highly genetically tractable budding yeast Saccharomyces cerevisiae. Indeed, every intervention known to extend both cellular and organismal health span was identified in yeast, underlining the power of this approach. Importantly, a growing body of work has implicated the process of autophagy as playing a critical role in the delay of aging. This review summarizes recent reports that have identified a role for autophagy, or autophagy factors in the extension of yeast life span. These studies demonstrate (1) that yeast remains an invaluable tool for the identification and characterization of conserved mechanisms that promote cellular longevity and are likely to be relevant to humans, and (2) that the process of autophagy has been implicated in nearly all known longevity-promoting manipulations and thus represents an ideal target for interventions aimed at improving human health span.


Subject(s)
Autophagy , Saccharomyces cerevisiae/physiology , Endoplasmic Reticulum/metabolism , Epigenesis, Genetic , Golgi Apparatus/metabolism , Homeostasis , Hormesis , Humans , Lipids/physiology , Longevity , Methionine/administration & dosage , Models, Biological , Parkinson Disease/pathology , Saccharomyces cerevisiae/metabolism
6.
Microb Cell ; 4(11): 368-375, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29167799

ABSTRACT

Aging is a complex, multi-factorial biological process shared by all living organisms. It is manifested by a gradual accumulation of molecular alterations that lead to the decline of normal physiological functions in a time-dependent fashion. The ultimate goal of aging research is to develop therapeutic means to extend human lifespan, while reducing susceptibility to many age-related diseases including cancer, as well as metabolic, cardiovascular and neurodegenerative disorders. However, this first requires elucidation of the causes of aging, which has been greatly facilitated by the use of model organisms. In particular, the budding yeast Saccharomyces cerevisiae has been invaluable in the identification of conserved molecular and cellular determinants of aging and for the development of approaches to manipulate these aging determinants to extend lifespan. Strikingly, where examined, virtually all means to experimentally extend lifespan result in the induction of cellular stress responses. This review describes growing evidence in yeast that activation of the integrated stress response contributes significantly to lifespan extension. These findings demonstrate that yeast remains a powerful model system for elucidating conserved mechanisms to achieve lifespan extension that are likely to drive therapeutic approaches to extend human lifespan and healthspan.

7.
Exp Gerontol ; 94: 83-88, 2017 08.
Article in English | MEDLINE | ID: mdl-28108330

ABSTRACT

Methionine restriction (MR) extends lifespan across different species. The main responses of rodent models to MR are well-documented in adipose tissue (AT) and liver, which have reduced mass and improved insulin sensitivity, respectively. Recently, molecular mechanisms that improve healthspan have been identified in both organs during MR. In fat, MR induced a futile lipid cycle concomitant with beige AT accumulation, producing elevated energy expenditure. In liver, MR upregulated fibroblast growth factor 21 and improved glucose metabolism in aged mice and in response to a high-fat diet. Furthermore, MR also reduces mitochondrial oxidative stress in various organs such as liver, heart, kidneys, and brain. Other effects of MR have also been reported in such areas as cardiac function in response to hyperhomocysteinemia (HHcy), identification of molecular mechanisms in bone development, and enhanced epithelial tight junction. In addition, rodent models of cancer responded positively to MR, as has been reported in colon, prostate, and breast cancer studies. The beneficial effects of MR have also been documented in a number of invertebrate model organisms, including yeast, nematodes, and fruit flies. MR not only promotes extended longevity in these organisms, but in the case of yeast has also been shown to improve stress tolerance. In addition, expression analyses of yeast and Drosophila undergoing MR have identified multiple candidate mediators of the beneficial effects of MR in these models. In this review, we emphasize other in vivo effects of MR such as in cardiovascular function, bone development, epithelial tight junction, and cancer. We also discuss the effects of MR in invertebrates.


Subject(s)
Aging/metabolism , Longevity , Methionine/deficiency , Aging/genetics , Aging/pathology , Animals , Bone Development , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Cardiovascular System/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Epithelial Cells/metabolism , Gene Expression Regulation , Humans , Neoplasms/metabolism , Neoplasms/pathology , Stress, Physiological , Tight Junctions/metabolism , Yeasts/growth & development , Yeasts/metabolism
8.
PLoS One ; 9(5): e97729, 2014.
Article in English | MEDLINE | ID: mdl-24830393

ABSTRACT

A methionine-restricted diet robustly improves healthspan in key model organisms. For example, methionine restriction reduces age-related pathologies and extends lifespan up to 45% in rodents. However, the mechanisms underlying these benefits remain largely unknown. We tested whether the yeast chronological aging assay could model the benefits of methionine restriction, and found that this intervention extends lifespan when enforced by either dietary or genetic approaches, and furthermore, that the observed lifespan extension is due primarily to reduced acid accumulation. In addition, methionine restriction-induced lifespan extension requires the activity of the retrograde response, which regulates nuclear gene expression in response to changes in mitochondrial function. Consistent with an involvement of stress-responsive retrograde signaling, we also found that methionine-restricted yeast are more stress tolerant than control cells. Prompted by these findings in yeast, we tested the effects of genetic methionine restriction on the stress tolerance and replicative lifespans of cultured mouse and human fibroblasts. We found that such methionine-restricted mammalian cells are resistant to numerous cytotoxic stresses, and are substantially longer-lived than control cells. In addition, similar to yeast, the extended lifespan of methionine-restricted mammalian cells is associated with NFκB-mediated retrograde signaling. Overall, our data suggest that improved stress tolerance and extension of replicative lifespan may contribute to the improved healthspan observed in methionine-restricted rodents, and also support the possibility that manipulation of the pathways engaged by methionine restriction may improve healthspan in humans.


Subject(s)
Methionine/metabolism , Saccharomyces cerevisiae/physiology , Acid-Base Equilibrium , Animals , Caloric Restriction , Cell Line , Cell Survival , Humans , Longevity , Mice , NF-kappa B/metabolism , Signal Transduction , Stress, Physiological
9.
Mol Cancer Ther ; 9(3): 682-92, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20197395

ABSTRACT

Soft tissue sarcomas are a diverse set of fatal human tumors where few agents have demonstrable clinical efficacy, with the standard therapeutic combination of doxorubicin and ifosfamide showing only a 25% to 30% response rate in large multi-institutional trials. Although liposarcomas are the most common histologic form of adult soft tissue sarcomas, research in this area is severely hampered by the lack of experimentally tractable in vitro model systems. To this end, here we describe a novel in vitro model for human pleomorphic liposarcoma. The cell line (LS2) is derived from a pleomorphic liposarcoma that uses the alternative lengthening of telomeres (ALT) mechanism of telomere maintenance, which may be important in modulating the response of this tumor type to DNA-damaging agents. We present detailed baseline molecular and genomic data, including genome-wide copy number and transcriptome profiles, for this model compared with its parental tumor and a panel of liposarcomas covering multiple histologies. The model has retained essentially all of the detectable alterations in copy number that are seen in the parental tumor, and shows molecular karyotypic and expression profiles consistent with pleomorphic liposarcomas. We also show the utility of this model, together with two additional human liposarcoma cell lines, to investigate the relationship between topoisomerase 2A expression and the sensitivity of ALT-positive liposarcomas to doxorubicin. This model, together with its associated baseline data, provides a powerful new tool to develop treatments for this clinically poorly tractable tumor and to investigate the contribution that ALT makes to modulating sensitivity to doxorubicin.


Subject(s)
Doxorubicin/therapeutic use , Drug Resistance, Neoplasm/genetics , Liposarcoma/genetics , Soft Tissue Neoplasms/genetics , Telomere/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Chromosome Aberrations/chemically induced , Cytogenetic Analysis , Doxorubicin/pharmacology , Gene Expression Profiling , Genomic Instability/drug effects , HeLa Cells , Humans , Liposarcoma/drug therapy , Liposarcoma/pathology , Models, Theoretical , Soft Tissue Neoplasms/drug therapy , Soft Tissue Neoplasms/pathology , Telomere/metabolism
10.
Nucleic Acids Res ; 38(4): 1114-22, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19966276

ABSTRACT

The human Werner and Bloom syndromes (WS and BS) are caused by deficiencies in the WRN and BLM RecQ helicases, respectively. WRN, BLM and their Saccharomyces cerevisiae homologue Sgs1, are particularly active in vitro in unwinding G-quadruplex DNA (G4-DNA), a family of non-canonical nucleic acid structures formed by certain G-rich sequences. Recently, mRNA levels from loci containing potential G-quadruplex-forming sequences (PQS) were found to be preferentially altered in sgs1Delta mutants, suggesting that G4-DNA targeting by Sgs1 directly affects gene expression. Here, we extend these findings to human cells. Using microarrays to measure mRNAs obtained from human fibroblasts deficient for various RecQ family helicases, we observe significant associations between loci that are upregulated in WS or BS cells and loci that have PQS. No such PQS associations were observed for control expression datasets, however. Furthermore, upregulated genes in WS and BS showed no or dramatically reduced associations with sequences similar to PQS but that have considerably reduced potential to form intramolecular G4-DNA. These findings indicate that, like Sgs1, WRN and BLM can regulate transcription globally by targeting G4-DNA.


Subject(s)
Bloom Syndrome/genetics , DNA/chemistry , G-Quadruplexes , Gene Expression Regulation , RecQ Helicases/deficiency , Werner Syndrome/genetics , Base Sequence , Bloom Syndrome/metabolism , Cell Line , Fibroblasts/metabolism , Gene Expression Profiling , Humans , Up-Regulation , Werner Syndrome/metabolism
11.
Biochimie ; 90(8): 1250-63, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18331848

ABSTRACT

Certain guanine-rich sequences are capable of forming higher order structures known as G-quadruplexes. Moreover, particular genomic regions in a number of highly divergent organisms are enriched for such sequences, raising the possibility that G-quadruplexes form in vivo and affect cellular processes. While G-quadruplexes have been rigorously studied in vitro, whether these structures actually form in vivo and what their roles might be in the context of the cell have remained largely unanswered questions. Recent studies suggest that G-quadruplexes participate in the regulation of such varied processes as telomere maintenance, transcriptional regulation and ribosome biogenesis. Here we review studies aimed at elucidating the in vivo functions of quadruplex structures, with a particular focus on findings in yeast. In addition, we discuss the utility of yeast model systems in the study of the cellular roles of G-quadruplexes.


Subject(s)
DNA/chemistry , DNA/metabolism , G-Quadruplexes , Yeasts/metabolism , Animals , DNA/genetics , Fungal Proteins/metabolism , Humans , Yeasts/genetics
12.
Cancer Res ; 67(19): 9221-8, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17909028

ABSTRACT

Telomere attrition ultimately leads to the activation of protective cellular responses, such as apoptosis or senescence. Impairment of such mechanisms can allow continued proliferation despite the presence of dysfunctional telomeres. Under such conditions, high levels of genome instability are often engendered. Data from both mouse and human model systems indicate that a period of genome instability might facilitate tumorigenesis. Here, we use a liposarcoma model system to assay telomere maintenance mechanism (TMM)-specific genetic alterations. A multiassay approach was used to assess the TMMs active in tumors. Genomic DNA from these samples was then analyzed by high-resolution DNA mapping array to identify genetic alterations. Our data reveal a higher level of genome instability in alternative lengthening of telomere (ALT)-positive tumors compared with telomerase-positive tumors, whereas tumors lacking both mechanisms have relatively low levels of genome instability. The bulk of the genetic changes are amplifications, regardless of the mode of telomere maintenance used. We also identified genetic changes specific to the ALT mechanism (e.g., deletion of chromosome 1q32.2-q44) as well as changes that are underrepresented among ALT-positive tumors, such as amplification of chromosome 12q14.3-q21.2. Taken together, these studies provide insight into the molecular pathways involved in the regulation of ALT and reveal several loci that might be exploited either as prognostic markers or targets of chemotherapeutic intervention.


Subject(s)
Liposarcoma/genetics , Telomere/genetics , Aged , Female , Gene Amplification , Gene Expression Profiling , Genome, Human , Genomic Instability , Humans , Loss of Heterozygosity , Male , Middle Aged
13.
Curr Opin Oncol ; 19(4): 377-82, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17545803

ABSTRACT

PURPOSE OF REVIEW: To examine the activation of telomere maintenance in a variety of sarcoma subtypes, and to review the consequences of telomere maintenance with respect to genome stability and tumor progression. RECENT FINDINGS: A hallmark of tumor cells is replicative immortality, which can be achieved, in part, by the activation of a telomere maintenance mechanism. A significant proportion of tumors show activation of telomerase, a specialized enzyme that adds telomeric repeats to pre-existing telomeres. Recent work has demonstrated, however, that a telomerase-independent mechanism called ALT (alternative lengthening of telomeres) is activated as frequently as telomerase in a variety of tumor types, particularly those of mesenchymal origin. Accordingly, panels of mesenchymal tumors have been interrogated for telomere maintenance mechanism, as well as characteristics such as tumor grade and patient survival. SUMMARY: These studies indicate a strong positive correlation between the activation of a telomere maintenance mechanism and tumor progression in sarcomas. In addition, the activation of either ALT or telomerase is correlated with poorer patient prognosis as compared with a lack of telomere maintenance. Ongoing studies aimed at elucidating the roles of ALT and telomerase in tumorigenesis should ultimately allow for the development of strategies to improve treatment of these malignancies.


Subject(s)
Sarcoma/pathology , Telomerase , Telomere , Chondrosarcoma, Mesenchymal , Chromosomal Instability , Disease Progression , Humans , Sarcoma/mortality , Survival
14.
Clin Cancer Res ; 11(15): 5347-55, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-16061847

ABSTRACT

PURPOSE: Telomeres are specialized nucleoprotein complexes that protect and confer stability upon chromosome ends. Loss of telomere function as a consequence of proliferation-associated sequence attrition results in genome instability, which may facilitate carcinogenesis by generating growth-promoting mutations. However, unlimited cellular proliferation requires the maintenance of telomeric DNA; thus, the majority of tumor cells maintain their telomeres either through the activity of telomerase or via a mechanism known as alternative lengthening of telomeres (ALT). Recent data suggest that constitutive telomere maintenance may not be required in all tumor types. Here we assess the role and requirement of telomere maintenance in liposarcoma. EXPERIMENTAL DESIGN: Tumor samples were analyzed with respect to telomerase activity, telomere length, and the presence of ALT-specific subcellular structures, ALT-associated promyelocytic leukemia nuclear bodies. This multi-assay assessment improved the accuracy of categorization. RESULTS: Our data reveal a significant incidence (24%) of ALT-positive liposarcomas, whereas telomerase is used at a similar frequency (27%). A large number of tumors (49%) do not show characteristics of telomerase or ALT. In addition, telomere length was always shorter in recurrent disease, regardless of the telomere maintenance mechanism. CONCLUSIONS: These results suggest that approximately one half of liposarcomas either employ a novel constitutively active telomere maintenance mechanism or lack such a mechanism. Analysis of recurrent tumors suggests that liposarcomas can develop despite limiting or undetectable activity of a constitutively active telomere maintenance mechanism.


Subject(s)
Liposarcoma/ultrastructure , Telomere/ultrastructure , Adult , Aged , Blotting, Southern , Cell Proliferation , Female , Fluorescent Antibody Technique, Indirect , Genome , Humans , Image Processing, Computer-Assisted , Liposarcoma/metabolism , Male , Middle Aged , Mutation , Nucleoproteins/metabolism , Peritoneal Neoplasms/metabolism , Peritoneal Neoplasms/ultrastructure , RNA, Messenger/metabolism , Recurrence , Reverse Transcriptase Polymerase Chain Reaction , Telomerase/metabolism
15.
J Bacteriol ; 186(8): 2418-29, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15060045

ABSTRACT

The MinC division inhibitor is required for accurate placement of the septal ring at the middle of the Escherichia coli cell. The N-terminal domain of MinC ((Z)MinC) interferes with FtsZ assembly, while the C-terminal domain ((D)MinC) mediates both dimerization and complex formation with either MinD or DicB. Binding to either of these activators greatly enhances the division-inhibitory activity of MinC in the cell. The MinD ATPase plays a crucial role in the rapid pole-to-pole oscillation of MinC that is proposed to force FtsZ ring formation to midcell. DicB is encoded by one of the cryptic prophages on the E. coli chromosome (Qin) and is normally not synthesized. Binding of MinD or DicB to (D)MinC produces complexes that have high affinities for one or more septal ring-associated targets. Here we show that the FtsZ-binding protein ZipA is required for both recruitment of the (D)MinC/DicB complex to FtsZ rings and the DicB-inducible division block normally seen in MinC(+) cells. In contrast, none of the known FtsZ-associated factors, including ZipA, FtsA, and ZapA, appear to be specifically required for targeting of the (D)MinC/MinD complex to rings, implying that the two MinC/activator complexes must recognize distinct features of FtsZ assemblies. MinD-dependent targeting of MinC may occur in two steps of increasing topological specificity: (i) recruitment of MinC from the cytoplasm to the membrane, and (ii) specific targeting of the MinC/MinD complex to nascent septal ring assemblies on the membrane. Using membrane-tethered derivatives of MinC, we obtained evidence that both of these steps contribute to the efficiency of MinC/MinD-mediated division inhibition.


Subject(s)
Adenosine Triphosphatases/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Membrane Proteins/metabolism , Cell Division , Escherichia coli/metabolism , Protein Structure, Tertiary
16.
J Bacteriol ; 184(11): 2951-62, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12003935

ABSTRACT

The MinC protein is an important determinant of septal ring positioning in Escherichia coli. The N-terminal domain ((Z)MinC) suppresses septal ring formation by interfering with FtsZ polymerization, whereas the C-terminal domain ((D)MinC) is required for dimerization as well as for interaction with the MinD protein. MinD oscillates between the membrane of both cell halves in a MinE-dependent fashion. MinC oscillates along with MinD such that the time-integrated concentration of (Z)MinC at the membrane is minimal, and hence the stability of FtsZ polymers is maximal, at the cell center. MinC is cytoplasmic and fails to block FtsZ assembly in the absence of MinD, indicating that recruitment of MinC by MinD to the membrane enhances (Z)MinC function. Here, we present evidence that the binding of (D)MinC to MinD endows the MinC/MinD complex with a more specific affinity for a septal ring-associated target in vivo. Thus, MinD does not merely attract MinC to the membrane but also aids MinC in specifically binding to, or in close proximity to, the substrate of its (Z)MinC domain. MinC-mediated division inhibition can also be activated in a MinD-independent fashion by the DicB protein of cryptic prophage Kim. DicB shows little homology to MinD, and how it stimulates MinC function has been unclear. Similar to the results obtained with MinD, we find that DicB interacts directly with (D)MinC, that the (D)MinC/DicB complex has a high affinity for some septal ring target(s), and that MinC/DicB interferes with the assembly and/or integrity of FtsZ rings in vivo. The results suggest a multistep mechanism for the activation of MinC-mediated division inhibition by either MinD or DicB and further expand the number of properties that can be ascribed to the Min proteins.


Subject(s)
Adenosine Triphosphatases/metabolism , Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Cytoskeletal Proteins , Escherichia coli Proteins , Escherichia coli/cytology , GTP Phosphohydrolases/metabolism , Membrane Proteins/metabolism , Bacillus subtilis/metabolism , Cell Division , Escherichia coli/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...