Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
bioRxiv ; 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38496532

ABSTRACT

A hybrid off-lattice agent-based model has been developed to reconstruct the tumor tissue oxygenation landscape based on histology images and simulated interactions between vasculature and cells with microenvironment metabolites. Here, we performed a robustness sensitivity analysis of that model's physical and computational parameters. We found that changes in the domain boundary conditions, the initial conditions, and the Michaelis constant are negligible and, thus, do not affect the model outputs. The model is also not sensitive to small perturbations of the vascular influx or the maximum consumption rate of oxygen. However, the model is sensitive to large perturbations of these parameters and changes in the tissue boundary condition, emphasizing an imperative aim to measure these parameters experimentally.

2.
Nat Commun ; 15(1): 1148, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326303

ABSTRACT

Melanoma incidence and mortality rates are historically higher for men than women. Although emerging studies have highlighted tumorigenic roles for the male sex hormone androgen and its receptor (AR) in melanoma, cellular and molecular mechanisms underlying these sex-associated discrepancies are poorly defined. Here, we delineate a previously undisclosed mechanism by which androgen-activated AR transcriptionally upregulates fucosyltransferase 4 (FUT4) expression, which drives melanoma invasiveness by interfering with adherens junctions (AJs). Global phosphoproteomic and fucoproteomic profiling, coupled with in vitro and in vivo functional validation, further reveal that AR-induced FUT4 fucosylates L1 cell adhesion molecule (L1CAM), which is required for FUT4-increased metastatic capacity. Tumor microarray and gene expression analyses demonstrate that AR-FUT4-L1CAM-AJs signaling correlates with pathological staging in melanoma patients. By delineating key androgen-triggered signaling that enhances metastatic aggressiveness, our findings help explain sex-associated clinical outcome disparities and highlight AR/FUT4 and its effectors as potential prognostic biomarkers and therapeutic targets in melanoma.


Subject(s)
Melanoma , Neural Cell Adhesion Molecule L1 , Humans , Male , Female , Melanoma/metabolism , Androgens , Neural Cell Adhesion Molecule L1/metabolism , Lewis X Antigen/metabolism , Glycosylation , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Cell Line, Tumor , Fucosyltransferases/genetics , Fucosyltransferases/metabolism
3.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835307

ABSTRACT

Myelodysplastic Syndromes (MDSs) are bone marrow (BM) failure malignancies characterized by constitutive innate immune activation, including NLRP3 inflammasome driven pyroptotic cell death. We recently reported that the danger-associated molecular pattern (DAMP) oxidized mitochondrial DNA (ox-mtDNA) is diagnostically increased in MDS plasma although the functional consequences remain poorly defined. We hypothesized that ox-mtDNA is released into the cytosol, upon NLRP3 inflammasome pyroptotic lysis, where it propagates and further enhances the inflammatory cell death feed-forward loop onto healthy tissues. This activation can be mediated via ox-mtDNA engagement of Toll-like receptor 9 (TLR9), an endosomal DNA sensing pattern recognition receptor known to prime and activate the inflammasome propagating the IFN-induced inflammatory response in neighboring healthy hematopoietic stem and progenitor cells (HSPCs), which presents a potentially targetable axis for the reduction in inflammasome activation in MDS. We found that extracellular ox-mtDNA activates the TLR9-MyD88-inflammasome pathway, demonstrated by increased lysosome formation, IRF7 translocation, and interferon-stimulated gene (ISG) production. Extracellular ox-mtDNA also induces TLR9 redistribution in MDS HSPCs to the cell surface. The effects on NLRP3 inflammasome activation were validated by blocking TLR9 activation via chemical inhibition and CRISPR knockout, demonstrating that TLR9 was necessary for ox-mtDNA-mediated inflammasome activation. Conversely, lentiviral overexpression of TLR9 sensitized cells to ox-mtDNA. Lastly, inhibiting TLR9 restored hematopoietic colony formation in MDS BM. We conclude that MDS HSPCs are primed for inflammasome activation via ox-mtDNA released by pyroptotic cells. Blocking the TLR9/ox-mtDNA axis may prove to be a novel therapeutic strategy for MDS.


Subject(s)
DNA, Mitochondrial , Inflammasomes , Myelodysplastic Syndromes , Toll-Like Receptor 9 , Humans , DNA, Mitochondrial/metabolism , Inflammasomes/metabolism , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction/physiology , Toll-Like Receptor 9/metabolism
4.
Cancer Immunol Res ; 11(4): 466-485, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36757308

ABSTRACT

Oncolytic virus therapies induce the direct killing of tumor cells and activation of conventional dendritic cells (cDC); however, cDC activation has not been optimized with current therapies. We evaluated the adenoviral delivery of engineered membrane-stable CD40L (MEM40) and IFNß to locally activate cDCs in mouse tumor models. Combined tumor MEM40 and IFNß expression induced the highest cDC activation coupled with increased lymph node migration, increased systemic antitumor CD8+ T-cell responses, and regression of established tumors in a cDC1-dependent manner. MEM40 + IFNß combined with checkpoint inhibitors led to effective control of distant tumors and lung metastases. An oncolytic adenovirus (MEM-288) expressing MEM40 + IFNß  in phase I clinical testing induced cancer cell loss concomitant with enhanced T-cell infiltration and increased systemic presence of tumor T-cell clonotypes in non-small cell lung cancer (NSCLC) patients. This approach to simultaneously target two major DC-activating pathways has the potential to significantly affect the solid tumor immunotherapy landscape.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , CD40 Ligand , CD8-Positive T-Lymphocytes , Dendritic Cells , Immunotherapy , Cell Line, Tumor
5.
Cell Div ; 17(1): 6, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494865

ABSTRACT

Molecular epidemiology evidence indicates racial and ethnic differences in the aggressiveness and survival of breast cancer. Hispanics/Latinas (H/Ls) and non-Hispanic Black women (NHB) are at higher risk of breast cancer (BC)-related death relative to non-Hispanic white (NHW) women in part because they are diagnosed with hormone receptor-negative (HR) subtype and at higher stages. Since the cell cycle is one of the most commonly deregulated cellular processes in cancer, we propose that the mitotic kinases TTK (or Mps1), TBK1, and Nek2 could be novel targets to prevent breast cancer progression among NHBs and H/Ls. In this study, we calculated levels of TTK, p-TBK1, epithelial (E-cadherin), mesenchymal (Vimentin), and proliferation (Ki67) markers through immunohistochemical (IHC) staining of breast cancer tissue microarrays (TMAs) that includes samples from 6 regions in the Southeast of the United States and Puerto Rico -regions enriched with NHB and H/L breast cancer patients. IHC analysis showed that TTK, Ki67, and Vimentin were significantly expressed in triple-negative (TNBC) tumors relative to other subtypes, while E-cadherin showed decreased expression. TTK correlated with all of the clinical variables but p-TBK1 did not correlate with any of them. TCGA analysis revealed that the mRNA levels of multiple mitotic kinases, including TTK, Nek2, Plk1, Bub1, and Aurora kinases A and B, and transcription factors that are known to control the expression of these kinases (e.g. FoxM1 and E2F1-3) were upregulated in NHBs versus NHWs and correlated with higher aneuploidy indexes in NHB, suggesting that these mitotic kinases may be future novel targets for breast cancer treatment in NHB women.

6.
Cancers (Basel) ; 13(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34359645

ABSTRACT

Cancer-associated fibroblasts (CAF) are highly prevalent cells in the tumor microenvironment in clear cell renal cell carcinoma (ccRCC). CAFs exhibit a pro-tumor effect in vitro and have been implicated in tumor cell proliferation, metastasis, and treatment resistance. Our objective is to analyze the geospatial distribution of CAFs with proliferating and apoptotic tumor cells in the ccRCC tumor microenvironment and determine associations with survival and systemic treatment. Pre-treatment primary tumor samples were collected from 96 patients with metastatic ccRCC. Three adjacent slices were obtained from 2 tumor-core regions of interest (ROI) per patient, and immunohistochemistry (IHC) staining was performed for αSMA, Ki-67, and caspase-3 to detect CAFs, proliferating cells, and apoptotic cells, respectively. H-scores and cellular density were generated for each marker. ROIs were aligned, and spatial point patterns were generated, which were then used to perform spatial analyses using a normalized Ripley's K function at a radius of 25 µm (nK(25)). The survival analyses used an optimal cut-point method, maximizing the log-rank statistic, to stratify the IHC-derived metrics into high and low groups. Multivariable Cox regression analyses were performed accounting for age and International Metastatic RCC Database Consortium (IMDC) risk category. Survival outcomes included overall survival (OS) from the date of diagnosis, OS from the date of immunotherapy initiation (OS-IT), and OS from the date of targeted therapy initiation (OS-TT). Therapy resistance was defined as progression-free survival (PFS) <6 months, and therapy response was defined as PFS >9 months. CAFs exhibited higher cellular clustering with Ki-67+ cells than with caspase-3+ cells (nK(25): Ki-67 1.19; caspase-3 1.05; p = 0.04). The median nearest neighbor (NN) distance from CAFs to Ki-67+ cells was shorter compared to caspase-3+ cells (15 µm vs. 37 µm, respectively; p < 0.001). Multivariable Cox regression analyses demonstrated that both high Ki-67+ density and H-score were associated with worse OS, OS-IT, and OS-TT. Regarding αSMA+CAFs, only a high H-score was associated with worse OS, OS-IT, and OS-TT. For caspase-3+, high H-score and density were associated with worse OS and OS-TT. Patients whose tumors were resistant to targeted therapy (TT) had higher Ki-67 density and H-scores than those who had TT responses. Overall, this ex vivo geospatial analysis of CAF distribution suggests that close proximity clustering of tumor cells and CAFs potentiates tumor cell proliferation, resulting in worse OS and resistance to TT in metastatic ccRCC.

7.
Theranostics ; 11(11): 5313-5329, 2021.
Article in English | MEDLINE | ID: mdl-33859749

ABSTRACT

Rationale: Hypoxic regions (habitats) within tumors are heterogeneously distributed and can be widely variant. Hypoxic habitats are generally pan-therapy resistant. For this reason, hypoxia-activated prodrugs (HAPs) have been developed to target these resistant volumes. The HAP evofosfamide (TH-302) has shown promise in preclinical and early clinical trials of sarcoma. However, in a phase III clinical trial of non-resectable soft tissue sarcomas, TH-302 did not improve survival in combination with doxorubicin (Dox), possibly due to a lack of patient stratification based on hypoxic status. Therefore, we used magnetic resonance imaging (MRI) to identify hypoxic habitats and non-invasively follow therapies response in sarcoma mouse models. Methods: We developed deep-learning (DL) models to identify hypoxia, using multiparametric MRI and co-registered histology, and monitored response to TH-302 in a patient-derived xenograft (PDX) of rhabdomyosarcoma and a syngeneic model of fibrosarcoma (radiation-induced fibrosarcoma, RIF-1). Results: A DL convolutional neural network showed strong correlations (>0.76) between the true hypoxia fraction in histology and the predicted hypoxia fraction in multiparametric MRI. TH-302 monotherapy or in combination with Dox delayed tumor growth and increased survival in the hypoxic PDX model (p<0.05), but not in the RIF-1 model, which had a lower volume of hypoxic habitats. Control studies showed that RIF-1 resistance was due to hypoxia and not other causes. Notably, PDX tumors developed resistance to TH-302 under prolonged treatment that was not due to a reduction in hypoxic volumes. Conclusion: Artificial intelligence analysis of pre-therapy MR images can predict hypoxia and subsequent response to HAPs. This approach can be used to monitor therapy response and adapt schedules to forestall the emergence of resistance.


Subject(s)
Hypoxia/drug therapy , Nitroimidazoles/pharmacology , Phosphoramide Mustards/pharmacology , Prodrugs/pharmacology , Sarcoma/drug therapy , Animals , Artificial Intelligence , Cell Line, Tumor , Deep Learning , Disease Models, Animal , Doxorubicin/pharmacology , Ecosystem , Female , Humans , Magnetic Resonance Imaging/methods , Mice , Mice, Inbred C3H , Mice, SCID , Soft Tissue Neoplasms/drug therapy , Xenograft Model Antitumor Assays/methods
8.
Lab Invest ; 101(2): 204-217, 2021 02.
Article in English | MEDLINE | ID: mdl-33037322

ABSTRACT

Pancreatic cancer (PaCa) is the third leading cause of cancer-related deaths in the United States. There is an unmet need to develop strategies to detect PaCa at an early, operable stage and prevent its progression. Intraductal papillary mucinous neoplasms (IPMNs) are cystic PaCa precursors that comprise nearly 50% of pancreatic cysts detected incidentally via cross-sectional imaging. Since IPMNs can progress from low- and moderate-grade dysplasia to high-grade dysplasia and invasion, the study of these lesions offers a prime opportunity to develop early detection and prevention strategies. Organoids are an ideal preclinical platform to study IPMNs, and the objective of the current investigation was to establish a living biobank of patient-derived organoids (PDO) from IPMNs. IPMN tumors and adjacent normal pancreatic tissues were successfully harvested from 15 patients with IPMNs undergoing pancreatic surgical resection at Moffitt Cancer Center & Research Institute (Tampa, FL) between May of 2017 and March of 2019. Organoid cultures were also generated from cryopreserved tissues. Organoid count and size were determined over time by both Image-Pro Premier 3D Version 9.1 digital platform and Matlab application of a Circular Hough Transform algorithm, and histologic and genomic characterization of a subset of the organoids was performed using immunohistochemistry and targeted sequencing, respectively. The success rates for organoid generation from IPMN tumor and adjacent normal pancreatic tissues were 81% and 87%, respectively. IPMN organoids derived from different epithelial subtypes showed different morphologies in vitro, and organoids recapitulated histologic and genomic characteristics of the parental IPMN tumor. In summary, this preclinical model has the potential to provide new opportunities to unveil mechanisms of IPMN progression to invasion and to shed insight into novel biomarkers for early detection and targets for chemoprevention.


Subject(s)
Biological Specimen Banks , Organoids/pathology , Pancreas/pathology , Pancreatic Intraductal Neoplasms/pathology , Aged , Aged, 80 and over , Algorithms , Cell Culture Techniques , Female , Histocytochemistry , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Organoids/cytology , Pancreas/cytology , Tissue Culture Techniques
9.
Adv Exp Med Biol ; 936: 1-10, 2016.
Article in English | MEDLINE | ID: mdl-27739040

ABSTRACT

In the field of pathology it is clear that molecular genomics and digital imaging represent two promising future directions, and both are as relevant to the tumor microenvironment as they are to the tumor itself (Beck AH et al. Sci Transl Med 3(108):108ra113-08ra113, 2011). Digital imaging, or whole slide imaging (WSI), of glass histology slides facilitates a number of value-added competencies which were not previously possible with the traditional analog review of these slides under a microscope by a pathologist. As an important tool for investigational research, digital pathology can leverage the quantification and reproducibility offered by image analysis to add value to the pathology field. This chapter will focus on the application of image analysis to investigate the tumor microenvironment and how quantitative investigation can provide deeper insight into our understanding of the tumor to tumor microenvironment relationship.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/statistics & numerical data , Neoplasms/diagnosis , Staining and Labeling/methods , Tumor Microenvironment , Eosine Yellowish-(YS) , Fluorescent Dyes , Hematoxylin , Histological Techniques , Humans , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Neoplasms/pathology , Neoplasms/ultrastructure
10.
Bioconjug Chem ; 27(2): 427-38, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26488422

ABSTRACT

In the United States, lung cancer is the leading cause of cancer death and ranks second in the number of new cases annually among all types of cancers. Better methods or tools for diagnosing and treating this disease are needed to improve patient outcomes. The delta-opioid receptor (δOR) is reported to be overexpressed in lung cancers and not expressed in normal lung. Thus, we decided to develop a lung cancer-specific imaging agent targeting this receptor. We have previously developed a δOR-targeted fluorescent imaging agent based on a synthetic peptide antagonist (Dmt-Tic) conjugated to a Cy5 fluorescent dye. In this work, we describe the synthesis of Dmt-Tic conjugated to a longer wavelength near-infrared fluorescent (NIRF) dye, Li-cor IR800CW. Binding affinity of Dmt-Tic-IR800 for the δOR was studied using lanthanide time-resolved fluorescence (LTRF) competitive binding assays in cells engineered to overexpress the δOR. In addition, we identified lung cancer cell lines with high and low endogenous expression of the δOR. We confirmed protein expression in these cell lines using confocal fluorescence microscopy imaging and used this technique to estimate the cell-surface receptor number in the endogenously expressing lung cancer cell lines. The selectivity of Dmt-Tic-IR800 for imaging of the δOR in vivo was shown using both engineered cell lines and endogenously expressing lung cancer cells in subcutaneous xenograft models in mice. In conclusion, the δOR-specific fluorescent probe developed in this study displays excellent potential for imaging of lung cancer.


Subject(s)
Carbocyanines/metabolism , Dipeptides/metabolism , Fluorescent Dyes/metabolism , Lung Neoplasms/diagnosis , Lung/metabolism , Optical Imaging , Receptors, Opioid, delta/metabolism , Tetrahydroisoquinolines/metabolism , Animals , Binding, Competitive , Carbocyanines/chemical synthesis , Carbocyanines/chemistry , Cell Line, Tumor , Dipeptides/chemical synthesis , Dipeptides/chemistry , Female , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Humans , Lung/pathology , Lung Neoplasms/metabolism , Mice , Mice, Nude , Receptors, Opioid, delta/analysis , Tetrahydroisoquinolines/chemical synthesis , Tetrahydroisoquinolines/chemistry
11.
PLoS One ; 9(12): e114249, 2014.
Article in English | MEDLINE | ID: mdl-25469886

ABSTRACT

Anemia remains the principal management challenge for patients with lower risk Myelodysplastic Syndromes (MDS). Despite appropriate cytokine production and cellular receptor display, erythropoietin receptor (EpoR) signaling is impaired. We reported that EpoR signaling is dependent upon receptor localization within lipid raft microdomains, and that disruption of raft integrity abolishes signaling capacity. Here, we show that MDS erythroid progenitors display markedly diminished raft assembly and smaller raft aggregates compared to normal controls (p = 0.005, raft number; p = 0.023, raft size). Because lenalidomide triggers raft coalescence in T-lymphocytes promoting immune synapse formation, we assessed effects of lenalidomide on raft assembly in MDS erythroid precursors and UT7 cells. Lenalidomide treatment rapidly induced lipid raft formation accompanied by EpoR recruitment into raft fractions together with STAT5, JAK2, and Lyn kinase. The JAK2 phosphatase, CD45, a key negative regulator of EpoR signaling, was displaced from raft fractions. Lenalidomide treatment prior to Epo stimulation enhanced both JAK2 and STAT5 phosphorylation in UT7 and primary MDS erythroid progenitors, accompanied by increased STAT5 DNA binding in UT7 cells, and increased erythroid colony forming capacity in both UT7 and primary cells. Raft induction was associated with F-actin polymerization, which was blocked by Rho kinase inhibition. These data indicate that deficient raft integrity impairs EpoR signaling, and provides a novel strategy to enhance EpoR signal fidelity in non-del(5q) MDS.


Subject(s)
Erythroid Precursor Cells/drug effects , Immunologic Factors/pharmacology , Membrane Microdomains/metabolism , Receptors, Erythropoietin/metabolism , Thalidomide/analogs & derivatives , Actins/metabolism , Aged , Aged, 80 and over , Amides/pharmacology , Cell Line, Tumor , Drug Evaluation, Preclinical , Erythroid Precursor Cells/physiology , Female , Humans , Lenalidomide , Male , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/pathology , Protein Multimerization/drug effects , Pyridines/pharmacology , Signal Transduction , Thalidomide/pharmacology , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism
12.
Br J Haematol ; 160(2): 177-87, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23157224

ABSTRACT

Aberrant JAK2 signalling plays an important role in the aetiology of myeloproliferative neoplasms (MPNs). JAK2 inhibitors, however, do not readily eliminate neoplastic MPN cells and thus do not induce patient remission. Further understanding JAK2 signalling in MPNs may uncover novel avenues for therapeutic intervention. Recent work has suggested a potential role for cellular cholesterol in the activation of JAK2 by the erythropoietin receptor and in the development of an MPN-like disorder in mice. Our study demonstrates for the first time that the MPN-associated JAK2-V617F kinase localizes to lipid rafts and that JAK2-V617F-dependent signalling is inhibited by lipid raft disrupting agents, which target membrane cholesterol, a critical component of rafts. We also show for the first time that statins, 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors, widely used to treat hypercholesterolaemia, induce apoptosis and inhibit JAK2-V617F-dependent cell growth. These cells are more sensitive to statin treatment than non-JAK2-V617F-dependent cells. Importantly, statin treatment inhibited erythropoietin-independent erythroid colony formation of primary cells from MPN patients, but had no effect on erythroid colony formation from healthy individuals. Our study is the first to demonstrate that JAK2-V617F signalling is dependent on lipid rafts and that statins may be effective in a potential therapeutic approach for MPNs.


Subject(s)
Janus Kinase 2/physiology , Membrane Microdomains/physiology , Mutation, Missense , Myeloproliferative Disorders/enzymology , Point Mutation , Signal Transduction/drug effects , Simvastatin/pharmacology , beta-Cyclodextrins/pharmacology , Apoptosis/drug effects , Cell Line, Tumor/drug effects , Cell Line, Tumor/enzymology , Cells, Cultured/drug effects , Cells, Cultured/enzymology , Cholesterol/analysis , Cholesterol/physiology , Colony-Forming Units Assay , Drug Evaluation, Preclinical , Erythroid Precursor Cells/drug effects , Erythroid Precursor Cells/enzymology , Humans , Janus Kinase 2/genetics , K562 Cells/drug effects , K562 Cells/enzymology , Leukemia, Erythroblastic, Acute/enzymology , Leukemia, Erythroblastic, Acute/pathology , Leukemia, Megakaryoblastic, Acute/enzymology , Leukemia, Megakaryoblastic, Acute/pathology , Megakaryocyte Progenitor Cells/drug effects , Megakaryocyte Progenitor Cells/enzymology , Membrane Lipids/physiology , Membrane Microdomains/drug effects , Myeloproliferative Disorders/blood , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , STAT5 Transcription Factor/metabolism
13.
J Pathol Inform ; 4: 28, 2013.
Article in English | MEDLINE | ID: mdl-24392242

ABSTRACT

BACKGROUND: The cytology literature relating to diagnostic accuracy using whole slide imaging is scarce. We studied the diagnostic concordance between glass and digital slides among diagnosticians with different profiles to assess the readiness of adopting digital cytology in routine practice. MATERIALS AND METHODS: This cohort consisted of 22 de-identified previously screened and diagnosed cases, including non-gynecological and gynecological slides using standard preparations. Glass slides were digitalized using Aperio ScanScope XT (×20 and ×40). Cytopathologists with (3) and without (3) digital experience, cytotechnologists (4) and senior pathology residents (2) diagnosed the digital slides independently first and recorded the results. Glass slides were read and recorded separately 1-3 days later. Accuracy of diagnosis, time to diagnosis and diagnostician's profile were analyzed. RESULTS: Among 22 case pairs and four study groups, correct diagnosis (93% vs. 86%) was established using glass versus digital slides. Both methods more (>95%) accurately diagnosed positive cases than negatives. Cytopathologists with no digital experience were the most accurate in digital diagnosis, even the senior members. Cytotechnologists had the fastest diagnosis time (3 min/digital vs. 1.7 min/glass), but not the best accuracy. Digital time was 1.5 min longer than glass-slide time/per case for cytopathologists and cytotechnologists. Senior pathology residents were slower and less accurate with both methods. Cytopathologists with digital experience ranked 2(nd) fastest in time, yet last in accuracy for digital slides. CONCLUSIONS: There was good overall diagnostic agreement between the digital whole-slide images and glass slides. Although glass slide diagnosis was more accurate and faster, the results of technologists and pathologists with no digital cytology experience suggest that solid diagnostic ability is a strong indicator for readiness of digital adoption.

14.
PLoS One ; 7(4): e34477, 2012.
Article in English | MEDLINE | ID: mdl-22509308

ABSTRACT

Upon erythropoietin (Epo) engagement, Epo-receptor (R) homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling receptor signal fidelity. Here we show a critical role for membrane raft (MR) microdomains in creation of discrete signaling platforms essential for Epo-R signaling. Treatment of UT7 cells with Epo induced MR assembly and coalescence. Confocal microscopy showed that raft aggregates significantly increased after Epo stimulation (mean, 4.3±1.4(SE) vs. 25.6±3.2 aggregates/cell; p≤0.001), accompanied by a >3-fold increase in cluster size (p≤0.001). Raft fraction immunoblotting showed Epo-R translocation to MR after Epo stimulation and was confirmed by fluorescence microscopy in Epo stimulated UT7 cells and primary erythroid bursts. Receptor recruitment into MR was accompanied by incorporation of JAK2, Lyn, and STAT5 and their activated forms. Raft disruption by cholesterol depletion extinguished Epo induced Jak2, STAT5, Akt and MAPK phosphorylation in UT7 cells and erythroid progenitors. Furthermore, inhibition of the Rho GTPases Rac1 or RhoA blocked receptor recruitment into raft fractions, indicating a role for these GTPases in receptor trafficking. These data establish a critical role for MR in recruitment and assembly of Epo-R and signal intermediates into discrete membrane signaling units.


Subject(s)
Membrane Microdomains/metabolism , Receptors, Erythropoietin/metabolism , Signal Transduction , Animals , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/drug effects , Erythroid Precursor Cells/metabolism , Humans , Membrane Microdomains/drug effects , Phosphoproteins/metabolism , Protein Transport/drug effects , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , rac1 GTP-Binding Protein/antagonists & inhibitors , rhoA GTP-Binding Protein/antagonists & inhibitors
15.
Cancer Cell Int ; 11: 27, 2011 Aug 12.
Article in English | MEDLINE | ID: mdl-21838899

ABSTRACT

BACKGROUND: Chlorotoxin (TM601), a scorpion venom- derived 36-AA peptide, is an experimental drug against recurrent glioma with tumor specificity but unknown route of intracellular distribution. The aim of this study was to evaluate the route of entry and cellular localization of TM601 in glioma cells. RESULTS: We have found that in human gliomas, lung carcinoma and normal vascular endothelial cells, TM601 localizes near trans-Golgi while in normal human dermal fibroblasts (NHDF) and astrocytes it is dispersed in the cytoplasm. The uptake of TM601 by U373 glioma cells is rapid, concentration and time dependent, not affected by inhibitors such as filipin (caveolae-dependent endocytosis) and amiloride (non-selective macropinocytosis), but significantly affected by chlorpromazine (clathrin-dependent intracellular transport of coated pits) resulting in intracellular build-up of the drug and clathrin near the Golgi. In contrast, TM601 uptake by NHDF cells was significantly affected by amiloride indicating that macropinocytosis is the dominant uptake route of TM601 in these cells. CONCLUSIONS: In conclusion, we found a distinct cellular localization pattern and uptake of TM601 by glioma cells differing from that found in normal cells. Further insight into the cellular processing of TM601 should assist in the development of effective anti-glioma therapeutic modalities.

16.
Cell Cycle ; 9(7): 1421-33, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20305393

ABSTRACT

The product of the breast and ovarian cancer susceptibility gene BRCA1 has been implicated in several aspects of the DNA damage response but its biochemical function in these processes has remained elusive. In order to probe BRCA1 function we conducted a yeast two-hybrid screening to identify interacting partners to a conserved motif (Motif 6) in the central region of BRCA1. Here we report the identification of the actin-binding protein Filamin A (FLNA) as BRCA1 partner and demonstrate that FLNA is required for efficient regulation of early stages of DNA repair processes. Cells lacking FLNA display a diminished BRCA1 IR-induced focus formation and a delayed kinetics of Rad51 focus formation. In addition, our data also demonstrate that FLNA is required to stabilize the interaction between components of the DNA-PK holoenzyme, DNA-PKcs and Ku86 in a BRCA1-independent fashion. Our data is consistent with a model in which absence of FLNA compromises homologous recombination and non-homologous end joining. Our findings have implications for the response to irradiation induced DNA damage.


Subject(s)
BRCA1 Protein/metabolism , Contractile Proteins/metabolism , DNA Damage/physiology , DNA Repair/physiology , Microfilament Proteins/metabolism , Amino Acid Motifs/genetics , Amino Acid Motifs/physiology , BRCA1 Protein/genetics , Blotting, Western , Cell Line, Tumor , Comet Assay , Contractile Proteins/genetics , DNA Damage/genetics , DNA Repair/genetics , Filamins , Fluorescent Antibody Technique , Humans , Immunoprecipitation , Microfilament Proteins/genetics , Protein Binding/genetics , Protein Binding/physiology
17.
Cancer Res ; 70(2): 675-84, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20068179

ABSTRACT

Activating B-Raf mutations arise in 60% to 70% of human melanomas and are thought to play a vital role in tumorigenesis, although how this occurs remains poorly understood. Wild-type B-Raf is critical for normal mitosis of human somatic cells, suggesting that mutational activation of B-Raf might compromise mitosis. We examined this hypothesis by introducing oncogenic mutant B-Raf(V600E) into established human melanoma cells, assessing the effects on mitosis and their possible relationship to extracellular signal-regulated kinase (ERK) pathway activation. Exogenous expression of this activated B-Raf mutant led to a high incidence of aberrant spindles and supernumerary centrosomes. These mitotic abnormalities were suppressed by expression of a B-Raf(V600E) mutant-specific shRNA or by the addition of the mitogen-activated protein/ERK kinase-specific inhibitor U0126. Mitotic abnormalities generated by B-Raf(V600E) also caused missegregation of chromosomes leading to aneuploidy. Because activating B-Raf mutations are detected frequently in benign nevi, we extended our studies to primary human melanocytes. Remarkably, short-term expression of B-Raf(V600E) was sufficient to induce aneuploidy in human melanocytes or in immortalized human mammary epithelial cells. Collectively, our studies identify a novel role for the B-Raf oncogene in driving aneuploidy in melanocytic cells. We propose that disruption of mitotic controls by oncogenic B-Raf has important implications for understanding melanoma tumor development.


Subject(s)
Aneuploidy , Centrosome/pathology , Melanocytes/physiology , Melanoma/genetics , Proto-Oncogene Proteins B-raf/genetics , Spindle Apparatus/pathology , Cell Line, Transformed , Cell Line, Tumor , Chromosome Aberrations , Chromosome Segregation , Epithelial Cells/pathology , Female , Humans , Mammary Glands, Human/pathology , Melanocytes/pathology , Melanoma/pathology , Mitosis/genetics , Mutation , Spindle Apparatus/genetics , Telomerase/pharmacology
18.
Int J Oncol ; 35(2): 337-45, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19578748

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) is aberrantly activated in human cancer including lung cancer and has been implicated in transformation, tumorigenicity, and metastasis. One putative downstream gene regulated by Stat3 is MUC1 which also has important roles in tumorigenesis. We determined if Stat3 regulates MUC1 in lung cancer cell lines and what function MUC1 plays in lung cancer cell biology. We examined MUC1 expression in non-small cell lung cancer (NSCLC) cell lines and found high levels of MUC1 protein expression associated with higher levels of tyrosine phosphorylated STAT3. STAT3 knockdown downregulated MUC1 expression whereas constitutive STAT3 expression increased MUC1 expression at mRNA and protein levels. MUC1 knockdown induced cellular apoptosis concomitant with reduced Bcl-XL and sensitized cells to cisplatin treatment. MUC1 knockdown inhibited tumor growth and metastasis in an orthotopic mouse model of lung cancer by activating apoptosis and inhibiting cell proliferation in vivo. These results demonstrate that constitutively activated STAT3 regulates expression of MUC1, which mediates lung cancer cell survival and metastasis in vitro and in vivo. MUC1 appears to be a cooperating oncoprotein with multiple oncogenic tyrosine kinase pathways and could be an effective target for the treatment of lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Mucin-1/physiology , STAT3 Transcription Factor/physiology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Survival , Cisplatin/therapeutic use , Focal Adhesion Protein-Tyrosine Kinases/physiology , Humans , Lung Neoplasms/drug therapy , Mucin-1/genetics , Neoplasm Invasiveness , Phosphorylation , Proto-Oncogene Proteins c-akt/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...