Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
ACM BCB ; 2019: 259-268, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31592520

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is currently the most commonly identified antibiotic-resistant pathogen in US hospitals. Resistance to methicillin is carried by SCCmec genetic elements. Multilocus sequence typing (MLST) covers internal fragments of seven housekeeping genes of S. aureus. In conjunction with mec typing, MLST has been used to create an international nomenclature for S. aureus. MLST sequence types with a single nucleotide polymorphism (SNP) considered distinct. In this work, relationships among MLST SNPs and methicillin/oxacillin resistance or susceptibility were studied, using a public data base, by means of cross-tabulation tests, multivariable (phylogenetic) logistic regression (LR), decision trees, rule bases, and random forests (RF). Model performances were assessed through multiple cross-validation. Hierarchical clustering of SNPs was also employed to analyze mutational covariation. The number of instances with a known methicillin (oxacillin) antibiogram result was 1526 (649), where 63% (54%) was resistant to methicillin (oxacillin). In univariable analysis, several MLST SNPs were found strongly associated with antibiotic resistance/susceptibility. A RF model predicted correctly the resistance/susceptibility to methicillin and oxacillin in 75% and 63% of cases (cross-validated). Results were similar for LR. Hierarchical clustering of the aforementioned SNPs yielded a high level of covariation both within the same and different genes; this suggests strong genetic linkage between SNPs of housekeeping genes and antibiotic resistant associated genes. This finding provides a basis for rapid identification of antibiotic resistant S. arues lineages using a small number of genomic markers. The number of sites could subsequently be increased moderately to increase the sensitivity and specificity of genotypic tests for resistance that do not rely on the direct detection of the resistance marker itself.

2.
Pediatrics ; 143(6)2019 06.
Article in English | MEDLINE | ID: mdl-31085738

ABSTRACT

As part of establishing a gender surgery center at a pediatric academic hospital, we undertook a process of identifying key ethical, legal, and contextual issues through collaboration among clinical providers, review by hospital leadership, discussions with key staff and hospital support services, consultation with the hospital's ethics committee, outreach to other institutions providing transgender health care, and meetings with hospital legal counsel. This process allowed the center to identify key issues, formulate approaches to resolving those issues, and develop policies and procedures addressing stakeholder concerns. Key issues identified during the process included the appropriateness of providing gender-affirming surgeries to adolescents and adults, given the hospital's mission and emphasis on pediatric services; the need for education on the clinical basis for offered procedures; methods for obtaining adequate informed consent and assent; the lower and upper acceptable age limits for various procedures; the role of psychological assessments in determining surgical eligibility; the need for coordinated, multidisciplinary patient care; and the importance of addressing historical access inequities affecting transgender patients. The process also facilitated the development of policies addressing the identified issues, articulation of a guiding mission statement, institution of ongoing educational opportunities for hospital staff, beginning outreach to the community, and guidance as to future avenues of research and policy development. Given the sensitive nature of the center's services and the significant clinical, ethical, and legal issues involved, we recommend such a process when a establishing a program for gender surgery in a pediatric institution.


Subject(s)
Gender Dysphoria/surgery , Hospitals, Pediatric/ethics , Pediatrics/ethics , Specialties, Surgical/ethics , Child , Gender Dysphoria/diagnosis , Gender Dysphoria/psychology , Hospitals, Pediatric/standards , Humans , Pediatrics/standards , Specialties, Surgical/standards
3.
Sci Rep ; 8(1): 17573, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30514896

ABSTRACT

Ozone is a well-known disinfecting agent that is used as an alternative for chlorine in many applications, including water decontamination. However, the utility of ozone in water decontamination is limited by high electrical power consumption and expensive, bulky equipment associated with ozone generation. This study investigates the effectiveness of a lightweight, compact surface dielectric barrier discharge (SDBD) reactor as an ozone generator to inactivate Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA) in an open water system. Experimental details are provided for ozone generation technique, mixing method, ozone concentrations in air and water, and input energy required to produce adequate ozone concentrations for bacterial inactivation in a contaminated, open water system. Specifically, an active plasma module (APM) reactor system of size 48 cubic centimeters, weighing 55 grams, with a maximum ozone yield of 68.6 g/KWh was used in atmospheric conditions as the source of ozone along with an air pump and a diffusion stone for mixing the ozone in water. Over 4-log reduction in P. aeruginosa concentration was achieved in 4 minutes with 0.1 mg/L ozone concentration in an open water system using 8.8 ± 1.48 J input energy. Also, over 5-log reduction in MRSA concentration was achieved in 2 minutes with 0.04 mg/L ozone concentration in an open water system using 4.4 ± 0.74 J input energy.


Subject(s)
Disinfection/instrumentation , Disinfection/methods , Methicillin-Resistant Staphylococcus aureus/drug effects , Ozone/toxicity , Pseudomonas aeruginosa/drug effects , Disinfectants/toxicity , Equipment Design , Water , Water Microbiology
5.
Nature ; 548(7668): 407-412, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28813414

ABSTRACT

Sepsis in early infancy results in one million annual deaths worldwide, most of them in developing countries. No efficient means of prevention is currently available. Here we report on a randomized, double-blind, placebo-controlled trial of an oral synbiotic preparation (Lactobacillus plantarum plus fructooligosaccharide) in rural Indian newborns. We enrolled 4,556 infants that were at least 2,000 g at birth, at least 35 weeks of gestation, and with no signs of sepsis or other morbidity, and monitored them for 60 days. We show a significant reduction in the primary outcome (combination of sepsis and death) in the treatment arm (risk ratio 0.60, 95% confidence interval 0.48-0.74), with few deaths (4 placebo, 6 synbiotic). Significant reductions were also observed for culture-positive and culture-negative sepsis and lower respiratory tract infections. These findings suggest that a large proportion of neonatal sepsis in developing countries could be effectively prevented using a synbiotic containing L. plantarum ATCC-202195.


Subject(s)
Sepsis/prevention & control , Synbiotics/administration & dosage , Adult , Double-Blind Method , Female , Follow-Up Studies , Humans , India , Infant , Infant, Newborn , Lactobacillus plantarum , Oligosaccharides/administration & dosage , Oligosaccharides/therapeutic use , Sepsis/diet therapy , Sepsis/microbiology , Sepsis/mortality , Young Adult
6.
Bioorg Med Chem ; 25(14): 3649-3657, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28528082

ABSTRACT

A potent, in vivo efficacious 11ß hydroxysteroid dehydrogenase type 1 (11ß HSD1) inhibitor (11j) has been identified. Compound 11j inhibited 11ß HSD1 activity in human adipocytes with an IC50 of 4.3nM and in primary human adipose tissue with an IC80 of 53nM. Oral administration of 11j to cynomolgus monkey inhibited 11ß HSD1 activity in adipose tissue. Compound 11j exhibited >1000× selectivity over other hydroxysteroid dehydrogenases, displays desirable pharmacodynamic properties and entered human clinical trials in 2011.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Oxazines/chemistry , Pyridones/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Administration, Oral , Animals , Binding Sites , Cells, Cultured , Cytochrome P-450 Enzyme System/metabolism , Drug Evaluation, Preclinical , Half-Life , Inhibitory Concentration 50 , Macaca fascicularis , Molecular Docking Simulation , Oxazines/administration & dosage , Oxazines/pharmacokinetics , Protein Structure, Tertiary , Pyridones/administration & dosage , Pyridones/pharmacokinetics , Rats , Structure-Activity Relationship
7.
PLoS One ; 12(1): e0169245, 2017.
Article in English | MEDLINE | ID: mdl-28052108

ABSTRACT

Methicillin Resistant Staphylococcus aureus (MRSA) cause pneumonia and empyema thoraces. TLR9 activation provides protection against bacterial infections and Heme oxygenase-1 (HO-1) is known to enhance host innate immunity against bacterial infections. However, it is still unclear whether HO-1 regulates TLR-9 expression in the pleura and modulates the host innate defenses during MRSA empyema. In order to determine if HO-1 regulates host innate immune functions via modulating TLR expression, in MRSA empyema, HO-1+/+ and HO-1-/- mouse pleural mesothelial cells (PMCs) were infected with MRSA (1:10, MOI) in the presence or absence of Cobalt Protoporphyrin (CoPP) and Zinc Protoporphyrin (ZnPP) or CORM-2 (a Carbon monoxide donor) and the expression of mTLR9 and mBD14 was assessed by RT-PCR. In vivo, HO-1+/+ and HO-1-/- mice were inoculated with MRSA (5x106 CFU) intra-pleurally and host bacterial load was measured by CFU, and TLR9 expression in the pleura was determined by histochemical-immunostaining. We noticed MRSA inducing differential expression of TLR9 in HO-1+/+ and HO-1 -/- PMCs. In MRSA infected HO-1+/+ PMCs, TLR1, TLR4, and TLR9 expression was several fold higher than MRSA infected HO-1-/- PMCs. Particularly TLR9 expression was very low in MRSA infected HO-1-/- PMCs both in vivo and in vitro. Bacterial clearance was significantly higher in HO-1+/+ PMCs than compared to HO-1-/- PMCs in vitro, and blocking TLR9 activation diminished MRSA clearance significantly. In addition, HO-1-/- mice were unable to clear the MRSA bacterial load in vivo. MRSA induced TLR9 and mBD14 expression was significantly high in HO-1+/+ PMCs and it was dependent on HO-1 activity. Our findings suggest that HO-1 by modulating TLR9 expression in PMCs promotes pleural innate immunity in MRSA empyema.


Subject(s)
Anemia, Hemolytic/metabolism , Epithelial Cells/enzymology , Epithelial Cells/metabolism , Growth Disorders/metabolism , Heme Oxygenase-1/deficiency , Iron Metabolism Disorders/metabolism , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Pleura/enzymology , Pleura/microbiology , Toll-Like Receptor 9/metabolism , Anemia, Hemolytic/genetics , Animals , Female , Growth Disorders/genetics , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Immunity, Innate/genetics , Immunity, Innate/physiology , Iron Metabolism Disorders/genetics , Male , Mice , Mice, Knockout , Pleura/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/physiology , Toll-Like Receptor 9/genetics
8.
PLoS One ; 11(10): e0164397, 2016.
Article in English | MEDLINE | ID: mdl-27732618

ABSTRACT

Despite infection prevention efforts, neonatal intensive care unit (NICU) patients remain at risk of Methicillin-resistant Staphylococcus aureus (MRSA) infection. Modes of transmission for healthcare-associated (HA) and community-associated (CA) MRSA remain poorly understood and may vary by genotype, hindering the development of effective prevention and control strategies. From 2008-2010, all patients admitted to a level III NICU were screened for MRSA colonization, and all available isolates were spa-typed. Spa-type t008, the most prevalent CA- genotype in the United States, spa-type t045, a HA- related genotype, and a convenience sample of strains isolated from 2003-2011, underwent whole-genome sequencing and phylodynamic analysis. Patient risk factors were compared between colonized and noncolonized infants, and virulence and resistance genes compared between spa-type t008 and non-t008 strains. Epidemiological and genomic data were used to estimate MRSA importations and acquisitions through transmission reconstruction. MRSA colonization was identified in 9.1% (177/1940) of hospitalized infants and associated with low gestational age and birth weight. Among colonized infants, low gestational age was more common among those colonized with t008 strains. Our data suggest that approximately 70% of colonizations were the result of transmission events within the NICU, with the remainder likely to reflect importations of "outside" strains. While risk of transmission within the NICU was not affected by spa-type, patterns of acquisition and importation differed between t008 and t045 strains. Phylodynamic analysis showed the effective population size of spa-type t008 has been exponentially increasing in both community and hospital, with spa-type t008 strains possessed virulence genes not found among t045 strains; t045 strains, in contrast, appeared to be of more recent origin, with a possible hospital source. Our data highlight the importance of both intra-NICU transmission and recurrent introductions in maintenance of MRSA colonization within the NICU environment, as well as spa-type-specific differences in epidemiology.


Subject(s)
Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/diagnosis , Staphylococcal Infections/virology , Female , Genotype , Humans , Infant , Intensive Care Units, Neonatal , Male , Molecular Epidemiology , Molecular Typing , Phylogeny , Staphylococcal Infections/epidemiology , Staphylococcal Infections/transmission
9.
Sci Rep ; 6: 36115, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27786291

ABSTRACT

Vibrio cholerae is ubiquitous in aquatic environments, with environmental toxigenic V. cholerae O1 strains serving as a source for recurrent cholera epidemics and pandemic disease. However, a number of questions remain about long-term survival and evolution of V. cholerae strains within these aquatic environmental reservoirs. Through monitoring of the Haitian aquatic environment following the 2010 cholera epidemic, we isolated two novel non-toxigenic (ctxA/B-negative) Vibrio cholerae O1. These two isolates underwent whole-genome sequencing and were investigated through comparative genomics and Bayesian coalescent analysis. These isolates cluster in the evolutionary tree with strains responsible for clinical cholera, possessing genomic components of 6th and 7th pandemic lineages, and diverge from "modern" cholera strains around 1548 C.E. [95% HPD: 1532-1555]. Vibrio Pathogenicity Island (VPI)-1 was present; however, SXT/R391-family ICE and VPI-2 were absent. Rugose phenotype conversion and vibriophage resistance evidenced adaption for persistence in aquatic environments. The identification of V. cholerae O1 strains in the Haitian environment, which predate the first reported cholera pandemic in 1817, broadens our understanding of the history of pandemics. It also raises the possibility that these and similar environmental strains could acquire virulence genes from the 2010 Haitian epidemic clone, including the cholera toxin producing CTXϕ.


Subject(s)
Cholera/microbiology , Vibrio cholerae O1/genetics , Bayes Theorem , Cholera/epidemiology , Cholera/pathology , Cholera Toxin/genetics , Cholera Toxin/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , DNA, Bacterial/metabolism , Haiti/epidemiology , Humans , Pandemics , Phylogeny , Sequence Analysis, DNA , Vibrio cholerae O1/classification , Vibrio cholerae O1/isolation & purification , Water Microbiology , Whole Genome Sequencing
10.
PLoS One ; 11(9): e0163279, 2016.
Article in English | MEDLINE | ID: mdl-27642751

ABSTRACT

Third-generation cephalosporins are an important class of antibiotics that are widely used in treatment of serious Gram-negative bacterial infections. In this study, we report the isolation of bacteria resistant to the third-generation cephalosporin cefotaxime from cattle with no previous cefotaxime antibiotic exposure. The prevalence of cefotaxime-resistant bacteria was examined by a combination of culture based and molecular typing methods in beef cattle (n = 1341) from 8 herds located in North Central Florida. The overall prevalence of cefotaxime-resistant bacteria was 15.8% (95% CI: 13.9, 17.8), varied between farms, and ranged from 5.2% to 100%. A subset of isolates (n = 23) was further characterized for the cefotaxime minimum inhibitory concentration (MIC) and antibiotic susceptibility against 10 different antibiotics, sequencing of nine ß- lactamase genes, and species identification by 16S rRNA sequencing. Most of the bacterial isolates were resistant to cefotaxime (concentrations, > 64 µg/mL) and showed high levels of multi-drug resistance. Full length 16S rRNA sequences (~1300 bp) revealed that most of the isolates were not primary human or animal pathogens; rather were more typical of commensal, soil, or other environmental origin. Six extended spectrum ß-lactamase (ESBL) genes identical to those in clinical human isolates were identified. Our study highlights the potential for carriage of cefotaxime resistance (including "human" ESBL genes) by the bacterial flora of food animals with no history of cefotaxime antibiotic exposure. A better understanding of the origin and transmission of resistance genes in these pre-harvest settings will be critical to development of strategies to prevent the spread of antimicrobial resistant microorganisms to hospitals and communities.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cefotaxime/pharmacology , Animals , Cattle , Drug Resistance, Bacterial
11.
Front Pediatr ; 3: 67, 2015.
Article in English | MEDLINE | ID: mdl-26284228

ABSTRACT

BACKGROUND: There are limited reports of the use of whole exome sequencing (WES) as a clinical diagnostic tool. Moreover, there are no reports addressing the cost burden associated with genetic tests performed prior to WES. OBJECTIVE: We demonstrate the performance characteristics of WES in a pediatric setting by describing our patient cohort, calculating the diagnostic yield, and detailing the patients for whom clinical management was altered. Moreover, we examined the potential cost-effectiveness of WES by examining the cost burden of diagnostic workups. METHODS: To determine the clinical utility of our hospital's clinical WES, we performed a retrospective review of the first 40 cases. We utilized dual bioinformatics analyses pipelines based on commercially available software and in-house tools. RESULTS: Of the first 40 clinical cases, we identified genetic defects in 12 (30%) patients, of which 47% of the mutations were previously unreported in the literature. Among the 12 patients with positive findings, seven have autosomal dominant disease and five have autosomal recessive disease. Ninety percent of the cohort opted to receive secondary findings and of those, secondary medical actionable results were returned in three cases. Among these positive cases, there are a number of novel mutations that are being reported here. The diagnostic workup included a significant number of genetic tests with microarray and single-gene sequencing being the most popular tests. Significantly, genetic diagnosis from WES led to altered patient medical management in positive cases. CONCLUSION: We demonstrate the clinical utility of WES by establishing the clinical diagnostic rate and its impact on medical management in a large pediatric center. The cost-effectiveness of WES was demonstrated by ending the diagnostic odyssey in positive cases. Also, in some cases it may be most cost-effective to directly perform WES. WES provides a unique glimpse into the complexity of genetic disorders.

12.
Int J Infect Dis ; 37: 152-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26164777

ABSTRACT

BACKGROUND: In an attempt to better understand the non-O1/O139 isolates of Vibrio cholerae, a systematic study of clinical and environmental isolates collected from various geographical locations between the years 1932 and 1998 was conducted. METHODS: Ninety-nine V. cholerae isolates collected from clinical and environmental sources from various geographical regions between 1932 and 1998 were studied by sequencing seven housekeeping genes. Genetic relatedness was defined by multiple methods that allow for the observed high levels of recombination. RESULTS: Four V. cholerae subpopulations were determined. One subpopulation contained mostly environmental isolates, a second contained the cholera toxin-positive serogroup O1/O139 isolates, and the other two subpopulations were enriched for non-O1/O139 clinical isolates that were frequently clonally related to each other. CONCLUSIONS: The data suggest that many of these non-O1/O139 clinical isolates were phylogenetically related to common ancestors, even though the isolates had been collected up to 36 years apart and from different countries or continents.


Subject(s)
Vibrio cholerae non-O1/genetics , Environmental Microbiology , Humans , Vibrio Infections/microbiology , Vibrio cholerae non-O1/classification , Vibrio cholerae non-O1/isolation & purification
13.
Infect Control Hosp Epidemiol ; 36(7): 777-85, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25998499

ABSTRACT

BACKGROUND Infants in the neonatal intensive care unit (NICU) are at increased risk for methicillin-resistant Staphylococcus aureus (MRSA) acquisition. Outbreaks may be difficult to identify due in part to limitations in current molecular genotyping available in clinical practice. Comparison of genome-wide single nucleotide polymorphisms (SNPs) may identify epidemiologically distinct isolates among a population sample that appears homogenous when evaluated using conventional typing methods. OBJECTIVE To investigate a putative MRSA outbreak in a NICU utilizing whole-genome sequencing and phylogenetic analysis to identify recent transmission events. DESIGN Clinical and surveillance specimens collected during clinical care and outbreak investigation. PATIENTS A total of 17 neonates hospitalized in a 43-bed level III NICU in northeastern Florida from December 2010 to October 2011 were included in this study. METHODS We assessed epidemiological data in conjunction with 4 typing methods: antibiograms, PFGE, spa types, and phylogenetic analysis of genome-wide SNPs. RESULTS Among the 17 type USA300 isolates, 4 different spa types were identified using pulsed-field gel electrophoresis. Phylogenetic analysis identified 5 infants as belonging to 2 clusters of epidemiologically linked cases and excluded 10 unlinked cases from putative transmission events. The availability of these results during the initial investigation would have improved infection control interventions. CONCLUSION Whole-genome sequencing and phylogenetic analysis are invaluable tools for epidemic investigation; they identify transmission events and exclude cases mistakenly implicated by traditional typing methods. When routinely applied to surveillance and investigation in the clinical setting, this approach may provide actionable intelligence for measured, appropriate, and effective interventions.


Subject(s)
Disease Outbreaks , Intensive Care Units, Neonatal , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/epidemiology , Bacterial Typing Techniques , Electrophoresis, Gel, Pulsed-Field , Female , Florida/epidemiology , Genome , Humans , Infant, Newborn , Infection Control , Intensive Care Units, Neonatal/standards , Male , Methicillin-Resistant Staphylococcus aureus/classification , Phylogeny , Polymorphism, Single Nucleotide , Staphylococcal Infections/microbiology , Staphylococcal Infections/transmission
14.
Methods Mol Biol ; 1301: 115-28, 2015.
Article in English | MEDLINE | ID: mdl-25862053

ABSTRACT

Yersinia pestis is a human pathogen and can cause serious disease. Biosafety level 3 (BSL3) is required when handling this microorganism and all work requires a biological safety cabinet. For pulsed-field gel electrophoresis (PFGE), dedicated BSL3 PFGE equipment or a documented procedure that ensures that all viable bacteria are inactivated is required. All plasticware and glassware that comes into contact with the cultures should be disinfected/sterilized or disposed of in a safe manner, according to the guidelines of institution. This includes decontamination of pipettes, spatulas, etc. that were in contact with the cell suspensions or plugs. Disinfection of reusable plug molds should be done before they are washed; the disposable plug molds, including the tape and the tab that was used to push the plugs out of the wells, are also contaminated and should be disinfected with 10 % bleach for at least 30 min if they will be washed and reused.


Subject(s)
Bacterial Typing Techniques , Electrophoresis, Gel, Pulsed-Field/methods , Plague/microbiology , Yersinia pestis/genetics , Humans , Plague/genetics , Yersinia pestis/classification , Yersinia pestis/isolation & purification
15.
Am J Trop Med Hyg ; 92(4): 752-757, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25732684

ABSTRACT

Currently, there are only limited data available on rates of major diagnostic categories of illnesses among Haitian children. We have established a cohort of 1,245 students attending schools run by the Christianville Foundation in the Gressier/Leogane region of Haiti, for whom our group provides primary medical care. Among 1,357 clinic visits during the 2012-2013 academic year, the main disease categories (with rates per 1,000 child years of observation) included acute respiratory infection (ARI) (385.6 cases/1,000 child years of observation), gastrointestinal complaints (277.8 cases/1,000 child years), febrile illness (235.0 cases/1,000 child years), and skin infections (151.7 cases/1,000 child years). The most common diarrheal pathogen was enteroaggregative Escherichia coli (present in 17% of children with diarrhea); Vibrio cholerae O1 and norovirus were the next most common. Our data highlight the importance of better defining etiologies for ARI and febrile illnesses and continuing problems of diarrheal illness in this region, including mild cases of cholera, which would not have been diagnosed without laboratory screening.


Subject(s)
Diarrhea/epidemiology , Gastroenteritis/epidemiology , Respiratory Tract Infections/epidemiology , Skin Diseases, Infectious/epidemiology , Adolescent , Adult , Child , Child, Preschool , Cholera/epidemiology , Cholera/microbiology , Cohort Studies , Diarrhea/microbiology , Escherichia coli/physiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Female , Gastroenteritis/microbiology , Haiti/epidemiology , Humans , Male , Norovirus/physiology , Outpatients , Respiratory Tract Infections/microbiology , Schools , Seasons , Skin Diseases, Infectious/microbiology , Students , Vibrio cholerae O1/physiology , Young Adult
16.
mBio ; 5(6)2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25538191

ABSTRACT

UNLABELLED: Phylodynamic analysis of genome-wide single-nucleotide polymorphism (SNP) data is a powerful tool to investigate underlying evolutionary processes of bacterial epidemics. The method was applied to investigate a collection of 65 clinical and environmental isolates of Vibrio cholerae from Haiti collected between 2010 and 2012. Characterization of isolates recovered from environmental samples identified a total of four toxigenic V. cholerae O1 isolates, four non-O1/O139 isolates, and a novel nontoxigenic V. cholerae O1 isolate with the classical tcpA gene. Phylogenies of strains were inferred from genome-wide SNPs using coalescent-based demographic models within a Bayesian framework. A close phylogenetic relationship between clinical and environmental toxigenic V. cholerae O1 strains was observed. As cholera spread throughout Haiti between October 2010 and August 2012, the population size initially increased and then fluctuated over time. Selection analysis along internal branches of the phylogeny showed a steady accumulation of synonymous substitutions and a progressive increase of nonsynonymous substitutions over time, suggesting diversification likely was driven by positive selection. Short-term accumulation of nonsynonymous substitutions driven by selection may have significant implications for virulence, transmission dynamics, and even vaccine efficacy. IMPORTANCE: Cholera, a dehydrating diarrheal disease caused by toxigenic strains of the bacterium Vibrio cholerae, emerged in 2010 in Haiti, a country where there were no available records on cholera over the past 100 years. While devastating in terms of morbidity and mortality, the outbreak provided a unique opportunity to study the evolutionary dynamics of V. cholerae and its environmental presence. The present study expands on previous work and provides an in-depth phylodynamic analysis inferred from genome-wide single nucleotide polymorphisms of clinical and environmental strains from dispersed geographic settings in Haiti over a 2-year period. Our results indicate that even during such a short time scale, V. cholerae in Haiti has undergone evolution and diversification driven by positive selection, which may have implications for understanding the global clinical and epidemiological patterns of the disease. Furthermore, the continued presence of the epidemic strain in Haitian aquatic environments has implications for transmission.


Subject(s)
Cholera/epidemiology , Cholera/microbiology , Environmental Microbiology , Genetic Variation , Selection, Genetic , Vibrio cholerae O139/classification , Vibrio cholerae O1/classification , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Evolution, Molecular , Haiti/epidemiology , Mutation, Missense , Point Mutation , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Vibrio cholerae O1/genetics , Vibrio cholerae O1/isolation & purification , Vibrio cholerae O139/genetics , Vibrio cholerae O139/isolation & purification
17.
PLoS One ; 9(11): e112853, 2014.
Article in English | MEDLINE | ID: mdl-25390633

ABSTRACT

In October, 2010, epidemic cholera was reported for the first time in Haiti in over 100 years. Establishment of cholera endemicity in Haiti will be dependent in large part on the continued presence of toxigenic V. cholerae O1 in aquatic reservoirs. The rugose phenotype of V. cholerae, characterized by exopolysaccharide production that confers resistance to environmental stress, is a potential contributor to environmental persistence. Using a microbiologic medium promoting high-frequency conversion of smooth to rugose (S-R) phenotype, 80 (46.5%) of 172 V. cholerae strains isolated from clinical and environmental sources in Haiti were able to convert to a rugose phenotype. Toxigenic V. cholerae O1 strains isolated at the beginning of the epidemic (2010) were significantly less likely to shift to a rugose phenotype than clinical strains isolated in 2012/2013, or environmental strains. Frequency of rugose conversion was influenced by incubation temperature and time. Appearance of the biofilm produced by a Haitian clinical rugose strain (altered biotype El Tor HC16R) differed from that of a typical El Tor rugose strain (N16961R) by confocal microscopy. On whole-genome SNP analysis, there was no phylogenetic clustering of strains showing an ability to shift to a rugose phenotype. Our data confirm the ability of Haitian clinical (and environmental) strains to shift to a protective rugose phenotype, and suggest that factors such as temperature influence the frequency of transition to this phenotype.


Subject(s)
Polysaccharides, Bacterial/metabolism , Vibrio cholerae/metabolism , Biofilms/growth & development , Cholera/microbiology , Environment , Haiti , Humans , Phenotype , Phylogeny , Polymorphism, Single Nucleotide/genetics , Vibrio cholerae/genetics
18.
PLoS One ; 9(10): e108691, 2014.
Article in English | MEDLINE | ID: mdl-25285444

ABSTRACT

Pathogen host shifts represent a major source of new infectious diseases. There are several examples of cross-genus host jumps that have caused catastrophic epidemics in animal and plant species worldwide. Cross-kingdom jumps are rare, and are often associated with nosocomial infections. Here we provide an example of human-mediated cross-kingdom jumping of Exserohilum rostratum isolated from a patient who had received a corticosteroid injection and died of fungal meningitis in a Florida hospital in 2012. The clinical isolate of E. rostratum was compared with two plant pathogenic isolates of E. rostratum and an isolate of the closely related genus Bipolaris in terms of morphology, phylogeny, and pathogenicity on one C3 grass, Gulf annual rye grass (Lolium multiflorum), and two C4 grasses, Japanese stilt grass (Microstegium vimineum) and bahia grass (Paspalum notatum). Colony growth and color, as well as conidia shape and size were the same for the clinical and plant isolates of E. rostratum, while these characteristics differed slightly for the Bipolaris sp. isolate. The plant pathogenic and clinical isolates of E. rostratum were indistinguishable based on morphology and ITS and 28S rDNA sequence analysis. The clinical isolate was as pathogenic to all grass species tested as the plant pathogenic strains that were originally isolated from plant hosts. The clinical isolate induced more severe symptoms on stilt grass than on rye grass, while this was the reverse for the plant isolates of E. rostratum. The phylogenetic similarity between the clinical and plant-associated E. rostratum isolates and the ability of the clinical isolate to infect plants suggests that a plant pathogenic strain of E. rostratum contaminated the corticosteroid injection fluid and was able to cause systemic disease in the affected patient. This is the first proof that a clinical isolate of E. rostratum is also an effective plant pathogen.


Subject(s)
Ascomycota/physiology , Plants/microbiology , Animals , Ascomycota/isolation & purification , Ascomycota/pathogenicity , Base Sequence , DNA, Intergenic/genetics , Humans , Likelihood Functions , Phylogeny , Plant Diseases/microbiology , Plant Leaves/microbiology , Poaceae/microbiology , Spores, Fungal/physiology
19.
Environ Monit Assess ; 186(12): 8509-16, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25182685

ABSTRACT

In 2010, a magnitude 7.0 earthquake struck Haiti, severely damaging the drinking and wastewater infrastructure and leaving millions homeless. Compounding this problem, the introduction of Vibrio cholerae resulted in a massive cholera outbreak that infected over 700,000 people and threatened the safety of Haiti's drinking water. To mitigate this public health crisis, non-government organizations installed thousands of wells to provide communities with safe drinking water. However, despite increased access, Haiti currently lacks the monitoring capacity to assure the microbial safety of any of its water resources. For these reasons, this study was designed to assess the feasibility of using a simple, low-cost method to detect indicators of fecal contamination of drinking water that could be implemented at the community level. Water samples from 358 sources of drinking water in the Léogâne flood basin were screened with a commercially available hydrogen sulfide test and a standard membrane method for the enumeration of thermotolerant coliforms. When compared with the gold standard method, the hydrogen sulfide test had a sensitivity of 65 % and a specificity of 93 %. While the sensitivity of the assay increased at higher fecal coliform concentrations, it never exceeded 88 %, even with fecal coliform concentrations greater than 100 colony-forming units per 100 ml. While its simplicity makes the hydrogen sulfide test attractive for assessing water quality in low-resource settings, the low sensitivity raises concerns about its use as the sole indicator of the presence or absence of fecal coliforms in individual or community water sources.


Subject(s)
Drinking Water/chemistry , Environmental Monitoring/methods , Hydrogen Sulfide/analysis , Earthquakes , Haiti , Humans , Water Microbiology , Water Quality/standards , Water Supply/statistics & numerical data
20.
Am J Trop Med Hyg ; 91(4): 790-797, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25071005

ABSTRACT

We inventoried non-surface water sources in the Leogane and Gressier region of Haiti (approximately 270 km(2)) in 2012 and 2013 and screened water from 345 sites for fecal coliforms and Vibrio cholerae. An international organization/non-governmental organization responsible for construction could be identified for only 56% of water points evaluated. Sixteen percent of water points were non-functional at any given time; 37% had evidence of fecal contamination, with spatial clustering of contaminated sites. Among improved water sources (76% of sites), 24.6% had fecal coliforms versus 80.9% in unimproved sources. Fecal contamination levels increased significantly from 36% to 51% immediately after the passage of Tropical Storm Sandy in October of 2012, with a return to 34% contamination in March of 2013. Long-term sustainability of potable water delivery at a regional scale requires ongoing assessment of water quality, functionality, and development of community-based management schemes supported by a national plan for the management of potable water.


Subject(s)
Enterobacteriaceae/isolation & purification , Environmental Monitoring , Vibrio cholerae/isolation & purification , Water Microbiology , Water Supply/standards , Drinking Water , Earthquakes , Feces/microbiology , Geography , Haiti/epidemiology , Humans , Natural Springs/microbiology , Public Health , Water Wells/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...