Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(21): 34064-34073, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859171

ABSTRACT

By exploiting the excellent short-term phase stability between consecutive pulses from a free-running optical parametric oscillator frequency comb, we report the first example of hollow-core fiber-delivered heterodyne spectroscopy in the 3.1-3.8 µm wavelength range. The technique provides a means of spectroscopically interrogating a sample situated at the distal end of a fiber, with all electronics and light sources situated at the proximal end and with an inherent capability to suppress spectroscopically interfering features present in the free-space and in-fiber delivery path. Using a silica anti-resonant, hollow-core delivery fiber, we demonstrate high quality transmission and attenuated total reflectance spectroscopy of a plastic sample for fiber lengths of up to 40 m, significantly exceeding the few-meter lengths typically possible using solid-core fibers. The technique opens a route to implementing multi-species spectroscopic monitoring in remote and / or hostile industrial environments and medical applications.

2.
Opt Express ; 30(5): 7044-7052, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299476

ABSTRACT

High-resolution multi-species spectroscopy is achieved by delivering broadband 3-4-µm mid-infrared light through a 4.5-meter-long silica-based hollow-core optical fiber. Absorptions from H37Cl, H35Cl, H2O and CH4 present in the gas within the fiber core are observed, and the corresponding gas concentrations are obtained to 5-ppb precision using a high-resolution Fourier-transform spectrometer and a full-spectrum multi-species fitting algorithm. We show that by fully fitting the narrow absorption features of these light molecules their contributions can be nulled, enabling further spectroscopy of C3H6O and C3H8O contained in a Herriott cell after the fiber. As a demonstration of the potential to extend fiber-delivered broadband mid-infrared spectroscopy to significant distances, we present a high-resolution characterization of the transmission of a 63-meter length of hollow-core fiber, fully fitting the input and output spectra to obtain the intra-fiber gas concentrations. We show that, despite the fiber not having been purged, useful spectroscopic windows are still preserved which have the potential to enable hydrocarbon spectroscopy at the distal end of fibers with lengths of tens or even hundreds of meters.

3.
Nucleic Acids Res ; 48(22): e132, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33152076

ABSTRACT

Despite remarkable progress in DNA sequencing technologies there remains a trade-off between short-read platforms, having limited ability to sequence homopolymers, repeated motifs or long-range structural variation, and long-read platforms, which tend to have lower accuracy and/or throughput. Moreover, current methods do not allow direct readout of epigenetic modifications from a single read. With the aim of addressing these limitations, we have developed an optical electrowetting sequencing platform that uses step-wise nucleotide triphosphate (dNTP) release, capture and detection in microdroplets from single DNA molecules. Each microdroplet serves as a reaction vessel that identifies an individual dNTP based on a robust fluorescence signal, with the detection chemistry extended to enable detection of 5-methylcytosine. Our platform uses small reagent volumes and inexpensive equipment, paving the way to cost-effective single-molecule DNA sequencing, capable of handling widely varying GC-bias, and demonstrating direct detection of epigenetic modifications.


Subject(s)
DNA/genetics , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA/methods , Single Molecule Imaging , Base Composition/genetics , Humans , Nanotechnology , Nucleotides/genetics
4.
Nucleic Acids Res ; 47(17): e101, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31318971

ABSTRACT

A new approach to single-molecule DNA sequencing in which dNTPs, released by pyrophosphorolysis from the strand to be sequenced, are captured in microdroplets and read directly could have substantial advantages over current sequence-by-synthesis methods; however, there is no existing method sensitive enough to detect a single nucleotide in a microdroplet. We have developed a method for dNTP detection based on an enzymatic two-stage reaction which produces a robust fluorescent signal that is easy to detect and process. By taking advantage of the inherent specificity of DNA polymerases and ligases, coupled with volume restriction in microdroplets, this method allows us to simultaneously detect the presence of and distinguish between, the four natural dNTPs at the single-molecule level, with negligible cross-talk.


Subject(s)
Deoxyribonucleotides/analysis , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , DNA-Directed DNA Polymerase/metabolism , Deoxyribonucleosides/chemistry , Deoxyribonucleotides/chemistry , Limit of Detection , Microscopy, Fluorescence , Oligodeoxyribonucleotides/biosynthesis , Oligodeoxyribonucleotides/chemistry , Sensitivity and Specificity
5.
Nat Chem ; 6(6): 492-7, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24848234

ABSTRACT

Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications.


Subject(s)
Electrons , Polycyclic Aromatic Hydrocarbons/chemistry , Quantum Theory , Kinetics , Luminescent Measurements , Molecular Structure
6.
J Am Chem Soc ; 135(44): 16680-8, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24148017

ABSTRACT

We use transient absorption spectroscopy to demonstrate that the dynamics of singlet exciton fission in tetracene are independent of temperature (10­270 K). Low-intensity, broad-band measurements allow the identification of spectral features while minimizing bimolecular recombination. Hence, by directly observing both species, we find that the time constant for the conversion of singlets to triplet pairs is ~90 ps. However, in contrast to pentacene, where fission is effectively unidirectional, we confirm that the emissive singlet in tetracene is readily regenerated from spin-correlated "geminate" triplets following fission, leading to equilibrium dynamics. Although free triplets are efficiently generated at room temperature, the interplay of superradiance and frustrated triplet diffusion contributes to a nearly 20-fold increase in the steady-state fluorescence as the sample is cooled. Together, these results require that singlets and triplet pairs in tetracene are effectively degenerate in energy, and begin to reconcile the temperature dependence of many macroscopic observables with a fission process which does not require thermal activation.

7.
Adv Mater ; 25(30): 4131-8, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23907735

ABSTRACT

An energy cascading structure is designed in a polymer photovoltaic device to suppress recombination and improve quantum yields. By the insertion of a thin polymer interlayer with intermediate energy levels, electrons and holes can effectively shuttle away from each other while being spatially separated from recombination. An increase in open-circuit voltage and short-circuit current are observed in modified devices.


Subject(s)
Electric Power Supplies , Membranes, Artificial , Polymers/chemistry , Solar Energy , Electron Transport , Energy Transfer , Equipment Design , Equipment Failure Analysis , Materials Testing
8.
J Am Chem Soc ; 135(13): 5074-83, 2013 Apr 03.
Article in English | MEDLINE | ID: mdl-23480019

ABSTRACT

We report the electronic properties of the conjugated coupling between a donor polymer and an acceptor segment serving as a model for the coupling in conjugated donor-acceptor block copolymers. These structures allow the study of possible intrachain photoinduced charge separation, in contrast to the interchain separation achieved in conventional donor-acceptor blends. Depending on the nature of the conjugated linkage, we observe varying degrees of modification of the excited states, including the formation of intrachain charge transfer excitons. The polymers comprise a block (typically 18 repeat units) of P3HT, poly(3-hexyl thiophene), coupled to a single unit of F8-TBT (where F8 is dioctylfluorene, and TBT is thiophene-benzothiadiazole-thiophene). When the P3HT chain is linked to the TBT unit, we observe formation of a localized charge transfer state, with red-shifted absorption and emission. Independent of the excitation energy, this state is formed very rapidly (<40 fs) and efficiently. Because there is only a single TBT unit present, there is little scope for long-range charge separation and it is relatively short-lived, <1 ns. In contrast, when the P3HT chain and TBT unit are separated by the wider bandgap F8 unit, there is little indication for modification of either ground or excited electronic states, and longer-lived charge separated states are observed.

9.
J Phys Chem B ; 117(16): 4649-53, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23151039

ABSTRACT

We investigate the properties of long-lived species in F8BT films through time-resolved photoluminescence (PL) measurements at room temperature and 10 K. The kinetics consist of an initial exponential decay (τ = 2.26 ns) followed by a weak power-law decay (I(t) [proportionality] t(-1)) up to at least 1 ms, both of which depend weakly on temperature. From fluence-dependent PL and ultrafast transient absorption (TA) measurements, we confirm that this emission arises from the recombination of geminate charge-pairs generated through singlet-singlet annihilation. This behavior is a consequence of the donor-acceptor nature of this polymer, which enhances singlet-singlet annihilation and facilitates the formation of long-lived geminate-pairs from energetic singlet states.

10.
J Am Chem Soc ; 134(42): 17769-77, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23020174

ABSTRACT

We present a fast and efficient in situ synthetic approach to obtain fully π-conjugated polymers with degrees of polymerization up to 23 and near quantitative (>95%) heterobis-functionalization. The synthesis relies on the key advantages of controlled Suzuki chain-growth polymerization: control over molecular weight, narrow polydispersity, and ability to define polymer end groups. The first end group is introduced through the initiator metal complex tBu(3)PPd(X)Br, while the second end group is added by quenching of the chain-growth polymerization with the desired boronic esters. In all cases, polymers obtained at 50% conversion showed excellent end group fidelity and high purity following a simple workup procedure, as determined by MALDI-TOF, GPC, and (1)H and 2D NMR. End group functionalization altered the optoelectronic properties of the bridge polymer. Building on a common fluorene backbone, and guided by DFT calculations, we introduced donor and acceptor end groups to create polymeric molecular wires exhibiting charge transfer and energy transfer as characterized by fluorescence, absorption, and transient absorption spectroscopy as well as by fluorescence lifetime measurements.


Subject(s)
Polymers/chemical synthesis , Molecular Structure , Molecular Weight , Photochemical Processes , Polymerization , Polymers/chemistry , Quantum Theory
11.
Nano Lett ; 11(11): 4846-51, 2011 Nov 09.
Article in English | MEDLINE | ID: mdl-21985612

ABSTRACT

We present a new fully conjugated diblock copolymer, P3HT-b-PFTBTT, containing donor and acceptor blocks with suitably positioned energy levels for use in a solar cell. This is the first block copolymer to be based on an existing high-performance polymer:polymer blend. We observe phase separation of the blocks and self-assembly behavior. In ternary blends with the respective homopolymers the diblock copolymer introduces lateral nanostructure without restricting P3HT crystallization in the charge transport direction, resulting in standing lamellae. By adding the diblock to the homopolymer blend as a compatibilizer, we prevent phase separation at elevated temperatures and benefit from a dramatic increase in P3HT ordering, allowing us to demonstrate polymer blend photovoltaics where the nanostructure is thermodynamically, rather than kinetically, controlled.


Subject(s)
Electric Power Supplies , Nanostructures/chemistry , Nanotechnology/instrumentation , Organoselenium Compounds/chemistry , Solar Energy , Electron Transport , Equipment Design , Equipment Failure Analysis , Light , Materials Testing , Nanostructures/radiation effects , Organoselenium Compounds/radiation effects , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...