Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet A ; 179(2): 150-158, 2019 02.
Article in English | MEDLINE | ID: mdl-30614194

ABSTRACT

Cornelia de Lange syndrome (CdLS) is a dominant multisystemic malformation syndrome due to mutations in five genes-NIPBL, SMC1A, HDAC8, SMC3, and RAD21. The characteristic facial dysmorphisms include microcephaly, arched eyebrows, synophrys, short nose with depressed bridge and anteverted nares, long philtrum, thin lips, micrognathia, and hypertrichosis. Most affected individuals have intellectual disability, growth deficiency, and upper limb anomalies. This study looked at individuals from diverse populations with both clinical and molecularly confirmed diagnoses of CdLS by facial analysis technology. Clinical data and images from 246 individuals with CdLS were obtained from 15 countries. This cohort included 49% female patients and ages ranged from infancy to 37 years. Individuals were grouped into ancestry categories of African descent, Asian, Latin American, Middle Eastern, and Caucasian. Across these populations, 14 features showed a statistically significant difference. The most common facial features found in all ancestry groups included synophrys, short nose with anteverted nares, and a long philtrum with thin vermillion of the upper lip. Using facial analysis technology we compared 246 individuals with CdLS to 246 gender/age matched controls and found that sensitivity was equal or greater than 95% for all groups. Specificity was equal or greater than 91%. In conclusion, we present consistent clinical findings from global populations with CdLS while demonstrating how facial analysis technology can be a tool to support accurate diagnoses in the clinical setting. This work, along with prior studies in this arena, will assist in earlier detection, recognition, and treatment of CdLS worldwide.


Subject(s)
Abnormalities, Multiple/genetics , Cell Cycle Proteins/genetics , De Lange Syndrome/genetics , Intellectual Disability/genetics , Abnormalities, Multiple/epidemiology , Abnormalities, Multiple/physiopathology , Adolescent , Adult , Child , Child, Preschool , Chondroitin Sulfate Proteoglycans/genetics , Chromosomal Proteins, Non-Histone/genetics , De Lange Syndrome/epidemiology , De Lange Syndrome/physiopathology , Face/physiopathology , Female , Humans , Image Processing, Computer-Assisted , Infant , Infant, Newborn , Intellectual Disability/epidemiology , Intellectual Disability/physiopathology , Male , Mutation , Phenotype , Racial Groups/genetics , Young Adult
2.
Hum Genome Var ; 2: 15045, 2015.
Article in English | MEDLINE | ID: mdl-27081551

ABSTRACT

Oral-facial-digital syndrome VI (OFD6 OMIM #277170), also called Varadi-Papp syndrome, is a ciliopathy inherited in an autosomal recessive pattern. Recently, mutations in C5orf42 (OMIM #614571) have been associated with OFD6. OFD6 overlaps with Joubert syndrome and mutations in C5orf42 were described in Joubert syndrome 17 (JBTS17, OMIM #614571). Using exome sequencing we report three novel variants and one previously reported variant in the C5orf42 gene in patients with OFD6.

3.
N Engl J Med ; 367(14): 1321-31, 2012 Oct 04.
Article in English | MEDLINE | ID: mdl-22970919

ABSTRACT

BACKGROUND: Some copy-number variants are associated with genomic disorders with extreme phenotypic heterogeneity. The cause of this variation is unknown, which presents challenges in genetic diagnosis, counseling, and management. METHODS: We analyzed the genomes of 2312 children known to carry a copy-number variant associated with intellectual disability and congenital abnormalities, using array comparative genomic hybridization. RESULTS: Among the affected children, 10.1% carried a second large copy-number variant in addition to the primary genetic lesion. We identified seven genomic disorders, each defined by a specific copy-number variant, in which the affected children were more likely to carry multiple copy-number variants than were controls. We found that syndromic disorders could be distinguished from those with extreme phenotypic heterogeneity on the basis of the total number of copy-number variants and whether the variants are inherited or de novo. Children who carried two large copy-number variants of unknown clinical significance were eight times as likely to have developmental delay as were controls (odds ratio, 8.16; 95% confidence interval, 5.33 to 13.07; P=2.11×10(-38)). Among affected children, inherited copy-number variants tended to co-occur with a second-site large copy-number variant (Spearman correlation coefficient, 0.66; P<0.001). Boys were more likely than girls to have disorders of phenotypic heterogeneity (P<0.001), and mothers were more likely than fathers to transmit second-site copy-number variants to their offspring (P=0.02). CONCLUSIONS: Multiple, large copy-number variants, including those of unknown pathogenic significance, compound to result in a severe clinical presentation, and secondary copy-number variants are preferentially transmitted from maternal carriers. (Funded by the Simons Foundation Autism Research Initiative and the National Institutes of Health.).


Subject(s)
Congenital Abnormalities/genetics , DNA Copy Number Variations , Developmental Disabilities/genetics , Genetic Heterogeneity , Intellectual Disability/genetics , Phenotype , Autistic Disorder/genetics , Child , Comparative Genomic Hybridization , Female , Genome, Human , Humans , Male , Oligonucleotide Array Sequence Analysis , Sex Factors
4.
Hum Mutat ; 33(3): 457-66, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22213154

ABSTRACT

Renal coloboma syndrome, also known as papillorenal syndrome is an autosomal-dominant disorder characterized by ocular and renal malformations. Mutations in the paired-box gene, PAX2, have been identified in approximately half of individuals with classic findings of renal hypoplasia/dysplasia and abnormalities of the optic nerve. Prior to 2011, there was no actively maintained locus-specific database (LSDB) cataloguing the extent of genetic variation in the PAX2 gene and phenotypic variation in individuals with renal coloboma syndrome. Review of published cases and the collective diagnostic experience of three laboratories in the United States, France, and New Zealand identified 55 unique mutations in 173 individuals from 86 families. The three clinical laboratories participating in this collaboration contributed 28 novel variations in 68 individuals in 33 families, which represent a 50% increase in the number of variations, patients, and families published in the medical literature. An LSDB was created using the Leiden Open Variation Database platform: www.lovd.nl/PAX2. The most common findings reported in this series were abnormal renal structure or function (92% of individuals), ophthalmological abnormalities (77% of individuals), and hearing loss (7% of individuals). Additional clinical findings and genetic counseling implications are discussed.


Subject(s)
Coloboma/genetics , Databases, Genetic , PAX2 Transcription Factor/genetics , Renal Insufficiency/genetics , Vesico-Ureteral Reflux/genetics , Animals , Humans
5.
IEEE Trans Image Process ; 12(12): 1495-511, 2003.
Article in English | MEDLINE | ID: mdl-18244705

ABSTRACT

Image registration is the process by which we determine a transformation that provides the most accurate match between two images. The search for the matching transformation can be automated with the use of a suitable metric, but it can be very time-consuming and tedious. We introduce a registration algorithm that combines a simple yet powerful search strategy based on a stochastic gradient with two similarity measures, correlation and mutual information, together with a wavelet-based multiresolution pyramid. We limit our study to pairs of images, which are misaligned by rotation and/or translation, and present two main results. First, we demonstrate that, in our application, mutual information may be better suited for sub-pixel registration as it produces consistently sharper optimum peaks than correlation. Then, we show that the stochastic gradient search combined with either measure produces accurate results when applied to synthetic data, as well as to multitemporal or multisensor collections of satellite data. Mutual information is generally found to optimize with one-third the number of iterations required by correlation. Results also show that a multiresolution implementation of the algorithm yields significant improvements in terms of both speed and robustness over a single-resolution implementation.

6.
Am J Hum Genet ; 70(6): 1520-31, 2002 Jun.
Article in English | MEDLINE | ID: mdl-11992258

ABSTRACT

X-linked adrenoleukodystrophy (X-ALD) results from mutations in ABCD1. ABCD1 resides on Xq28 and encodes an integral peroxisomal membrane protein (ALD protein [ALDP]) that is of unknown function and that belongs to the ATP-binding cassette-transporter superfamily. Individuals with ABCD1 mutations accumulate very-long-chain fatty acids (VLCFA) (carbon length >22). Childhood cerebral X-ALD is the most devastating form of the disease. These children have the earliest onset (age 7.2 +/- 1.7 years) among the clinical phenotypes for ABCD1 mutations, but onset does not occur at <3 years of age. Individuals with either peroxisomal biogenesis disorders (PBD) or single-enzyme deficiencies (SED) in the peroxisomal beta-oxidation pathway--disorders such as acyl CoA oxidase deficiency and bifunctional protein deficiency--also accumulate VLCFA, but they present during the neonatal period. Until now, it has been possible to distinguish unequivocally between individuals with these autosomal recessively inherited syndromes and individuals with ABCD1 mutations, on the basis of the clinical presentation and measurement of other biochemical markers. We have identified three newborn boys who had clinical symptoms and initial biochemical results consistent with PBD or SED. In further study, however, we showed that they lacked ALDP, and we identified deletions that extended into the promoter region of ABCD1 and the neighboring gene, DXS1357E. Mutations in DXS1357E and the ABCD1 promoter region have not been described previously. We propose that the term "contiguous ABCD1 DXS1357E deletion syndrome" (CADDS) be used to identify this new contiguous-gene syndrome. The three patients with CADDS who are described here have important implications for genetic counseling, because individuals with CADDS may previously have been misdiagnosed as having an autosomal recessive PBD or SED


Subject(s)
Adrenoleukodystrophy/genetics , Chemokines, CC/genetics , Infant, Newborn, Diseases/genetics , Peroxisomal Disorders/physiopathology , Proteins/genetics , Sequence Deletion/genetics , X Chromosome/genetics , ATP Binding Cassette Transporter, Subfamily D, Member 1 , ATP-Binding Cassette Transporters/genetics , Adrenoleukodystrophy/diagnosis , Adrenoleukodystrophy/metabolism , Adrenoleukodystrophy/physiopathology , Age of Onset , Chemokine CCL22 , Child , Child, Preschool , Exons/genetics , Female , Fibroblasts , Genetic Complementation Test , Heterozygote , Humans , Infant , Infant, Newborn , Infant, Newborn, Diseases/diagnosis , Infant, Newborn, Diseases/metabolism , Infant, Newborn, Diseases/physiopathology , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Peroxisomal Disorders/diagnosis , Peroxisomal Disorders/genetics , Peroxisomal Disorders/metabolism , Peroxisomes/metabolism , Peroxisomes/pathology , Phenotype , Prenatal Diagnosis , Promoter Regions, Genetic/genetics , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...