Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 10(3)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809684

ABSTRACT

Animal models have been used in preclinical research to examine potential new treatments for spinal cord injury (SCI), including mesenchymal stem cell (MSC) transplantation. MSC transplants have been studied in early human trials. Whether the animal models represent the human studies is unclear. This systematic review and meta-analysis has examined the effects of MSC transplants in human and animal studies. Following searches of PubMed, Clinical Trials and the Cochrane Library, published papers were screened, and data were extracted and analysed. MSC transplantation was associated with significantly improved motor and sensory function in humans, and significantly increased locomotor function in animals. However, there are discrepancies between the studies of human participants and animal models, including timing of MSC transplant post-injury and source of MSCs. Additionally, difficulty in the comparison of functional outcome measures across species limits the predictive nature of the animal research. These findings have been summarised, and recommendations for further research are discussed to better enable the translation of animal models to MSC-based human clinical therapy.

2.
Biomolecules ; 10(9)2020 09 09.
Article in English | MEDLINE | ID: mdl-32916959

ABSTRACT

The majority of research into the effects of mesenchymal stem cell (MSC) transplants on spinal cord injury (SCI) is performed in rodent models, which may help inform on mechanisms of action, but does not represent the scale and wound heterogeneity seen in human SCI. In contrast, SCI in dogs occurs naturally, is more akin to human SCI, and can be used to help address important aspects of the development of human MSC-based therapies. To enable translation to the clinic and comparison across species, we have examined the paracrine, regenerative capacity of human and canine adipose-derived MSCs in vitro. MSCs were initially phenotyped according to tissue culture plastic adherence, cluster of differentiation (CD) immunoprofiling and tri-lineage differentiation potential. Conditioned medium (CM) from MSC cultures was then assessed for its neurotrophic and angiogenic activity using established cell-based assays. MSC CM significantly increased neuronal cell proliferation, neurite outgrowth, and ßIII tubulin immunopositivity. In addition, MSC CM significantly increased endothelial cell migration, cell proliferation and the formation of tubule-like structures in Matrigel assays. There were no marked or significant differences in the capacity of human or canine MSC CM to stimulate neuronal cell or endothelial cell activity. Hence, this study supports the use of MSC transplants for canine SCI; furthermore, it increases understanding of how this may subsequently provide useful information and translate to MSC transplants for human SCI.


Subject(s)
Mesenchymal Stem Cells/physiology , Spinal Cord Injuries/therapy , Animals , Cell Line , Cell Movement/physiology , Cell Proliferation/physiology , Collagen , Culture Media, Conditioned , Dogs , Drug Combinations , Endothelial Cells/physiology , Humans , In Vitro Techniques , Laminin , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic , Neuronal Outgrowth/physiology , Neurons/physiology , Paracrine Communication , Proteoglycans , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...