Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Trace Elem Res ; 177(1): 43-52, 2017 May.
Article in English | MEDLINE | ID: mdl-27778151

ABSTRACT

Determination of whether magnesium (Mg) is a nutrient of public health concern has been hindered by questionable Dietary Recommended Intakes (DRIs) and problematic status indicators that make Mg deficiency assessment formidable. Balance data obtained since 1997 indicate that the EAR and RDA for 70-kg healthy individuals are about 175 and 250 mg/day, respectively, and these DRIs decrease or increase based on body weight. These DRIs are less than those established for the USA and Canada. Urinary excretion data from tightly controlled metabolic unit balance studies indicate that urinary Mg excretion is 40 to 80 mg (1.65 to 3.29 mmol)/day when Mg intakes are <250 mg (10.28 mmol)/day, and 80 to 160 mg (3.29 to 6.58 mmol)/day when intakes are >250 mg (10.28 mmol)/day. However, changing from low to high urinary excretion with an increase in dietary intake occurs within a few days and vice versa. Thus, urinary Mg as a stand-alone status indicator would be most useful for population studies and not useful for individual status assessment. Tightly controlled metabolic unit depletion/repletion experiments indicate that serum Mg concentrations decrease only after a prolonged depletion if an individual has good Mg reserves. These experiments also found that, although individuals had serum Mg concentrations approaching 0.85 mmol/L (2.06 mg/dL), they had physiological changes that respond to Mg supplementation. Thus, metabolic unit findings suggest that individuals with serum Mg concentrations >0.75 mmol/L (1.82 mg/L), or as high as 0.85 mmol/L (2.06 mg/dL), could have a deficit in Mg such that they respond to Mg supplementation, especially if they have a dietary intake history showing <250 mg (10.28 mmol)/day and a urinary excretion of <80 mg (3.29 mmol)/day.


Subject(s)
Magnesium/metabolism , Magnesium/urine , Nutritional Requirements , Adult , Aged , Cross-Over Studies , Cross-Sectional Studies , Double-Blind Method , Female , Humans , Magnesium/administration & dosage , Magnesium Deficiency/blood , Magnesium Deficiency/diagnosis , Magnesium Deficiency/urine , Middle Aged , Postmenopause/blood , Postmenopause/urine
2.
J Nutr Biochem ; 16(11): 682-92, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16081273

ABSTRACT

Sensitivity of the assay for Cu,Zn superoxide dismutase 3 (SOD3), the predominant form of SOD in serum, can be increased, and interferences caused by low-molecular-weight substances in the serum can be reduced by conducting the assay at pH 10 with xanthine/xanthine oxidase and acetylated cytochrome c (cyt c) as superoxide generator and detector, respectively. Serum SOD3 activity was assayed under these conditions in an experiment where weanling, male rats were fed diets for 6 weeks containing 3, 5 and 15 mg Zn/kg with dietary Cu set at 0.3, 1.5 and 5 mg Cu/kg at each level of dietary Zn. Serum SOD3 responded to changes in dietary Cu but not to changes in dietary Zn. A second experiment compared serum SOD3 activity to traditional indices of Cu status in weanling, male and female rats after they were fed diets containing, nominally, 0, 1, 1.5, 2, 2.5, 3 and 6 mg Cu/kg for 6 weeks. Serum SOD3 activity was significantly lower (P < .05) in male rats fed diets containing 0 and 1 mg Cu/kg and female rats fed diet containing 0 mg Cu/kg compared with rats fed diet containing 6 mg Cu/kg. These changes were similar to changes in liver Cu concentrations, liver cyt c oxidase (CCO) activity and plasma ceruloplasmin in males and females. Serum SOD3 activity was also strongly, positively correlated with liver Cu concentrations over the entire range of dietary Cu concentrations (R(2) = .942 in males, R(2) = .884 in females, P < .0001). Plots of serum SOD3 activity, liver Cu concentration, liver CCO activity and ceruloplasmin as functions of kidney Cu concentration all had two linear segments that intersected at similar kidney Cu concentrations (18-22 microg/g dry kidney in males, 15-17 microg/g dry kidney in females). These findings indicate that serum SOD3 activity is a sensitive index of Cu status.


Subject(s)
Copper/metabolism , Superoxide Dismutase/blood , Animals , Ceruloplasmin/metabolism , Copper/administration & dosage , Diet , Electron Transport Complex IV/metabolism , Female , Kidney/metabolism , Liver/metabolism , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...