Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 30(6): 1219-1228, 2017 06.
Article in English | MEDLINE | ID: mdl-28133846

ABSTRACT

Evolutionary biologists have long sought to understand the ecological processes that generate plant reproductive diversity. Recent evidence indicates that constitutive antiherbivore defences can alter natural selection on reproductive traits, but it is unclear whether induced defences will have the same effect and whether reduced foliar damage in defended plants is the cause of this pattern. In a factorial field experiment using common milkweed, Asclepias syriaca L., we induced plant defences using jasmonic acid (JA) and imposed foliar damage using scissors. We found that JA-induced plants experienced selection for more inflorescences that were smaller in size (fewer flowers), whereas control plants only experienced a trend towards selection for larger inflorescences (more flowers); all effects were independent of foliar damage. Our results demonstrate that induced defences can alter both the strength and direction of selection on reproductive traits, and suggest that antiherbivore defences may promote the evolution of plant reproductive diversity.


Subject(s)
Asclepias , Herbivory , Reproduction , Selection, Genetic , Flowers
2.
J Evol Biol ; 29(1): 86-97, 2016 01.
Article in English | MEDLINE | ID: mdl-26395768

ABSTRACT

The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late-season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis.


Subject(s)
Biological Evolution , Genetic Variation , Herbivory , Oenothera biennis/physiology , Animals , Arthropods , Deer , Insecta , North Carolina , Oenothera biennis/genetics , Phenotype , Plant Leaves/physiology , Selection, Genetic
3.
J Evol Biol ; 25(8): 1576-86, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22587337

ABSTRACT

Theory predicts that sexual reproduction provides evolutionary advantages over asexual reproduction by reducing mutational load and increasing adaptive potential. Here, we test the latter prediction in the context of plant defences against pathogens because pathogens frequently reduce plant fitness and drive the evolution of plant defences. Specifically, we ask whether sexual evening primrose plant lineages (Onagraceae) have faster rates of adaptive molecular evolution and altered gene expression of a class I chitinase, a gene implicated in defence against pathogens, than functionally asexual evening primrose lineages. We found that the ratio of amino acid to silent substitutions (K(a) /K(s) = 0.19 vs. 0.11 for sexual and asexual lineages, respectively), the number of sites identified to be under positive selection (four vs. zero for sexual and asexual lineages, respectively) and the expression of chitinase were all higher in sexual than in asexual lineages. Our results are congruent with the conclusion that a loss of sexual recombination and segregation in the Onagraceae negatively affects adaptive structural and potentially regulatory evolution of a plant defence protein.


Subject(s)
Evolution, Molecular , Oenothera biennis/genetics , Adaptation, Physiological/genetics , Amino Acid Substitution , Chitinases/genetics , Gene Expression Regulation, Plant , Oenothera biennis/classification , Oenothera biennis/enzymology , Reproduction/genetics , Reproduction, Asexual/genetics , Selection, Genetic
4.
J Evol Biol ; 22(6): 1295-307, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19490388

ABSTRACT

This study explored genetic variation and co-variation in multiple functional plant traits. Our goal was to characterize selection, heritabilities and genetic correlations among different types of traits to gain insight into the evolutionary ecology of plant populations and their interactions with insect herbivores. In a field experiment, we detected significant heritable variation for each of 24 traits of Oenothera biennis and extensive genetic covariance among traits. Traits with diverse functions formed several distinct groups that exhibited positive genetic covariation with each other. Genetic variation in life-history traits and secondary chemistry together explained a large proportion of variation in herbivory (r(2) = 0.73). At the same time, selection acted on lifetime biomass, life-history traits and two secondary compounds of O. biennis, explaining over 95% of the variation in relative fitness among genotypes. The combination of genetic covariances and directional selection acting on multiple traits suggests that adaptive evolution of particular traits is constrained, and that correlated evolution of groups of traits will occur, which is expected to drive the evolution of increased herbivore susceptibility. As a whole, our study indicates that an examination of genetic variation and covariation among many different types of traits can provide greater insight into the evolutionary ecology of plant populations and plant-herbivore interactions.


Subject(s)
Genetic Variation , Multifactorial Inheritance , Oenothera biennis/physiology , Quantitative Trait, Heritable , Selection, Genetic , Food Chain , Oenothera biennis/anatomy & histology , Oenothera biennis/genetics , Phenols/metabolism
5.
Mol Ecol Resour ; 8(2): 434-6, 2008 Mar.
Article in English | MEDLINE | ID: mdl-21585813

ABSTRACT

We developed nine polymorphic microsatellite loci for evening primrose (Oenothera biennis). These loci have two to 18 alleles per locus and observed heterozygosities ranging from 0 to 0.879 in a sample of 34 individuals. In a pattern consistent with the functionally asexual reproductive system of this species, 17/36 pairs of loci revealed significant linkage disequilibrium and three loci showed significant deviations from Hardy-Weinberg equilibrium. The loci will be informative in identifying genotypes in multigenerational field studies to assess changes in genotype frequencies.

6.
J Evol Biol ; 20(1): 190-200, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17210012

ABSTRACT

Monocarpic plant species, where reproduction is fatal, frequently exhibit variation in the length of their prereproductive period prior to flowering. If this life-history variation in flowering strategy has a genetic basis, genotype-by-environment interactions (G x E) may maintain phenotypic diversity in flowering strategy. The native monocarpic plant Common Evening Primrose (Oenothera biennis L., Onagraceae) exhibits phenotypic variation for annual vs. biennial flowering strategies. I tested whether there was a genetic basis to variation in flowering strategy in O. biennis, and whether environmental variation causes G x E that imposes variable selection on flowering strategy. In a field experiment, I randomized more than 900 plants from 14 clonal families (genotypes) into five distinct habitats that represented a natural productivity gradient. G x E strongly affected the lifetime fruit production of O. biennis, with the rank-order in relative fitness of genotypes changing substantially between habitats. I detected genetic variation in annual vs. biennial strategies in most habitats, as well as a G x E effect on flowering strategy. This variation in flowering strategy was correlated with genetic variation in relative fitness, and phenotypic and genotypic selection analyses revealed that environmental variation resulted in variable directional selection on annual vs. biennial strategies. Specifically, a biennial strategy was favoured in moderately productive environments, whereas an annual strategy was favoured in low-productivity environments. These results highlight the importance of variable selection for the maintenance of genetic variation in the life-history strategy of a monocarpic plant.


Subject(s)
Adaptation, Biological/genetics , Environment , Flowers/physiology , Genetic Variation , Oenothera biennis/genetics , Phenotype , Selection, Genetic , Adaptation, Biological/physiology , Biomass , Genotype , Linear Models , Oenothera biennis/growth & development , Ontario
SELECTION OF CITATIONS
SEARCH DETAIL
...