Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Leukoc Biol ; 111(1): 135-145, 2022 01.
Article in English | MEDLINE | ID: mdl-33847413

ABSTRACT

Tissue-resident γδ T cells form the first line of defense at barrier surfaces where they survey host tissue for signs of stress or damage. Following recognition of injury, γδ T cells play a crucial role in the wound-healing response through the production of growth factors and cytokines that promote proliferation in surrounding epithelial cells. To initiate this response, γδ T cells require interactions with a variety of epithelial-expressed costimulatory molecules in addition to primary signaling through their TCR. In the epidermis these signals include the coxsackie and adenovirus receptor (CAR), histocompatibility antigen 60c (H60c), and plexin B2, which interact with γδ T cell-expressed junctional adhesion molecule-like protein (JAML), NKG2D, and CD100, respectively. Here we identify heat shock protein family A member 8 (Hspa8) and ICAM-1 as two additional keratinocyte-expressed costimulatory molecules for epidermal resident γδ T cells (termed DETC). These molecules were rapidly up-regulated in the epidermis following wounding in both mouse and human tissue. Both Hspa8 and ICAM-1 had a costimulatory effect on DETC, inducing proliferation, CD25 up-regulation, and IL-2 production. We also provide evidence that DETC can be activated through the potential ICAM-1 and Hspa8 receptors LFA-1 and CD316. Finally, knockdown of Hspa8 in keratinocytes reduced their ability to activate DETC in culture and ICAM-1-/- mice exhibited impaired rates of healing in skin-organ culture suggesting a role for these proteins in the DETC-mediated damage response. Together with previous work on CAR, H60c, and plexin B2, these results add to a picture of a complex keratinocyte wound signature that is required for efficient DETC activation.


Subject(s)
HSC70 Heat-Shock Proteins/immunology , Intercellular Adhesion Molecule-1/immunology , Lymphocyte Activation , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Animals , Cell Proliferation , Cells, Cultured , Humans , Keratinocytes/immunology , Mice, Inbred C57BL , T-Lymphocytes/cytology
2.
Cells ; 9(3)2020 03 11.
Article in English | MEDLINE | ID: mdl-32168884

ABSTRACT

While forming a minor population in the blood and lymphoid compartments, T cells are significantly enriched within barrier tissues. In addition to providing protection against infection, these tissue-resident T cells play critical roles in tissue homeostasis and repair. T cells in the epidermis and intestinal epithelium produce growth factors and cytokines that are important for the normal turnover and maintenance of surrounding epithelial cells and are additionally required for the efficient recognition of, and response to, tissue damage. A role for tissue-resident T cells is emerging outside of the traditional barrier tissues as well, with recent research indicating that adipose tissue-resident T cells are required for the normal maintenance and function of the adipose tissue compartment. Here we review the functions of tissue-resident T cells in the epidermis, intestinal epithelium, and adipose tissue, and compare the mechanisms of their activation between these sites.


Subject(s)
Epithelial Cells/metabolism , T-Lymphocytes/metabolism , Wound Healing/immunology , Humans , Signal Transduction
3.
Front Immunol ; 9: 731, 2018.
Article in English | MEDLINE | ID: mdl-29686687

ABSTRACT

Epithelial tissues line the body providing a protective barrier from the external environment. Maintenance of these epithelial barrier tissues critically relies on the presence of a functional resident T cell population. In some tissues, the resident T cell population is exclusively comprised of γδ T cells, while in others γδ T cells are found together with αß T cells and other lymphocyte populations. Epithelial-resident γδ T cells function not only in the maintenance of the epithelium, but are also central to the repair process following damage from environmental and pathogenic insults. Key to their function is the crosstalk between γδ T cells and neighboring epithelial cells. This crosstalk relies on multiple receptor-ligand interactions through both the T cell receptor and accessory molecules leading to temporal and spatial regulation of cytokine, chemokine, growth factor, and extracellular matrix protein production. As antigens that activate epithelial γδ T cells are largely unknown and many classical costimulatory molecules and coreceptors are not used by these cells, efforts have focused on identification of novel coreceptors and ligands that mediate pivotal interactions between γδ T cells and their neighbors. In this review, we discuss recent advances in the understanding of functions for these coreceptors and their ligands in epithelial maintenance and repair processes.


Subject(s)
Epithelium/physiology , Intraepithelial Lymphocytes/physiology , Receptors, Antigen, T-Cell, gamma-delta/physiology , Animals , Cell Adhesion , Cell Movement , Humans , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL
...