Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Chimia (Aarau) ; 77(5): 319-326, 2023 May 31.
Article in English | MEDLINE | ID: mdl-38047828

ABSTRACT

Flow chemistry was initially used for speed to early phase material delivery in the development laboratories, scaling up chemical transformations that we would not or could not scale up batch for safety reasons. Some early examples included a Newman Kwart Rearrangement, Claisen rearrangement, hydroformylation, and thermal imidazole cyclization. Next, flow chemistry was used to enable safe scale up of hazardous chemistries to manufacturing plants. Examples included high pressure hydrogenation, aerobic oxidation, and Grignard formation reactions. More recently, flow chemistry was used in Small Volume Continuous (SVC) processes, where highly potent oncolytic molecules were produced by fully continuous processes at about 10 kg/day including reaction, extraction, distillation, and crystallization, using disposable equipment contained in fume hoods.

2.
ACS Omega ; 7(50): 46809-46824, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36570276

ABSTRACT

This study focused on investigating diketopiperazine (DKP) and the formation of associated double-amino-acid deletion impurities during linear solid-phase peptide synthesis (SPPS) of tirzepatide (TZP). We identified that the DKP formation primarily occurred during the Fmoc-deprotection reaction and post-coupling aging of the unstable Fmoc-Pro-Pro-Ser-resin active pharmaceutical ingredient (API) intermediate. Similar phenomena have also been observed for other TZP active pharmaceutical ingredient (API) intermediates that contain a penultimate proline amino acid, such as Fmoc-Ala-Pro-Pro-Pro-Ser-resin, Fmoc-Pro-Pro-Pro-Ser-resin, and Fmoc-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-resin, which are intermediates for both hybrid and linear synthesis approaches. During post-coupling aging, it is found that Fmoc deprotection can proceed in dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), and acetonitrile (ACN) solvents without any piperidine addition. Density functional theory (DFT) calculations showed that a peptide that has a penultimate proline stabilizes the transition state through the C-H···π interaction during Fmoc decomposition, which causes those peptides to be more prone to cascade-deprotection reactions. Pseudo-reaction pathways are then proposed, and a corresponding macrokinetics model is developed to allow accurate prediction of the TZP peptide intermediate self-deprotection and DKP formation rate. Based on those studies, control strategies for minimizing DKP formation were further investigated and an alternative to Fmoc protection was identified (Bsmoc-protected amino acids), which eliminated the formation of the DKP byproducts. In addition, the use of oxyma additives and lower storage temperature was demonstrated to markedly improve the peptide intermediate stability to DKP degradation pathways.

3.
J Org Chem ; 87(4): 2045-2054, 2022 02 18.
Article in English | MEDLINE | ID: mdl-34374277

ABSTRACT

The ketone intermediate LSN647712 is a key synthetic intermediate for the drug substance lasmiditan manufacturing process. A three-step connected continuous flow process utilizing a Turbo Grignard reagent, N-methylpiperidin-4-ylmagnesium chloride, and lithiated 2,6-dibromopyridine sequentially added to double electrophile (O═C(++) synthon dimethylcarbamyl chloride (DMCC) was developed to deliver the ketone intermediate in a high chemical yield (>85%). This highly productive (>100 g/h lab system) and intensified process (τ ∼ 3 min) yields the product in high purity upon batch reactive crystallization to form a corresponding hydrobromide salt. In addition to the connected plug flow reactor system, the Grignard reagent, N-methylpiperidin-4-ylmagnesium chloride, was also prepared continuously in CSTR as a more soluble LiCl adduct in THF (Turbo Grignard).


Subject(s)
Carbamates , Halogens , Crystallization , Indicators and Reagents
4.
Annu Rev Chem Biomol Eng ; 9: 253-281, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29879381

ABSTRACT

The pharmaceutical industry has found new applications for the use of continuous processing for the manufacture of new therapies currently in development. The transformation has been encouraged by regulatory bodies as well as driven by cost reduction, decreased development cycles, access to new chemistries not practical in batch, improved safety, flexible manufacturing platforms, and improved product quality assurance. The transformation from batch to continuous manufacturing processing is the focus of this review. The review is limited to small, chemically synthesized organic molecules and encompasses the manufacture of both active pharmaceutical ingredients (APIs) and the subsequent drug product. Continuous drug product is currently used in approved processes. A few examples of production of APIs under current good manufacturing practice conditions using continuous processing steps have been published in the past five years, but they are lagging behind continuous drug product with respect to regulatory filings.


Subject(s)
Pharmaceutical Preparations/chemistry , Technology, Pharmaceutical , Dosage Forms/standards , Drug Industry , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/standards , Quality Control , Technology, Pharmaceutical/standards
5.
Expert Rev Clin Pharmacol ; 11(1): 5-13, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29206489

ABSTRACT

INTRODUCTION: For the manufacture of small molecule drugs, many pharmaceutical innovator companies have recently invested in continuous processing, which can offer significant technical and economic advantages over traditional batch methodology. This Expert Review will describe the reasons for this interest as well as many considerations and challenges that exist today concerning continuous manufacturing. Areas covered: Continuous processing is defined and many reasons for its adoption are described. The current state of continuous drug substance manufacturing within the pharmaceutical industry is summarized. Current key challenges to implementation of continuous manufacturing are highlighted, and an outlook provided regarding the prospects for continuous within the industry. Expert commentary: Continuous processing at Lilly has been a journey that started with the need for increased safety and capability. Over twelve years the original small, dedicated group has grown to more than 100 Lilly employees in discovery, development, quality, manufacturing, and regulatory designing in continuous drug substance processing. Recently we have focused on linked continuous unit operations for the purpose of all-at-once pharmaceutical manufacturing, but the technical and business drivers that existed in the very beginning for stand-alone continuous unit operations in hybrid processes have persisted, which merits investment in both approaches.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Industry/methods , Technology, Pharmaceutical/methods , Drug Compounding/methods , Humans , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry
6.
Org Process Res Dev ; 22(8): 971-977, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30906182

ABSTRACT

The synthetic utility of the aza-Henry reaction can be diminished on scale by potential hazards associated with the use of peracid to prepare nitroalkane substrates, and the nitroalkanes themselves. In response, a continuous and scalable chemistry platform to prepare aliphatic nitroalkanes on-demand is reported, using the oxidation of oximes with peracetic acid and direct reaction of the nitroalkane intermediate in an aza-Henry reaction. A uniquely designed pipes-in-series plug flow tube reactor addresses a range of process challenges including stability and safe handling of peroxides and nitroalkanes. The subsequent continuous extraction generates a solution of purified nitroalkane which can be directly used in the following enantioselective aza-Henry chemistry to furnish valuable chiral diamine precursors in high selectivity, thus, completely avoiding isolation of potentially unsafe low molecular weight nitroalkane intermediate. A continuous campaign (16 h) established that these conditions were effective in processing 100 g of the oxime and furnishing 1.4 L of nitroalkane solution.

7.
Science ; 356(6343): 1144-1150, 2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28619938

ABSTRACT

Advances in drug potency and tailored therapeutics are promoting pharmaceutical manufacturing to transition from a traditional batch paradigm to more flexible continuous processing. Here we report the development of a multistep continuous-flow CGMP (current good manufacturing practices) process that produced 24 kilograms of prexasertib monolactate monohydrate suitable for use in human clinical trials. Eight continuous unit operations were conducted to produce the target at roughly 3 kilograms per day using small continuous reactors, extractors, evaporators, crystallizers, and filters in laboratory fume hoods. Success was enabled by advances in chemistry, engineering, analytical science, process modeling, and equipment design. Substantial technical and business drivers were identified, which merited the continuous process. The continuous process afforded improved performance and safety relative to batch processes and also improved containment of a highly potent compound.


Subject(s)
Antineoplastic Agents/chemical synthesis , Chemistry, Pharmaceutical/methods , Drug Industry/methods , Pharmaceutical Preparations/chemical synthesis , Chemistry, Pharmaceutical/standards , Drug Industry/standards , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/standards
8.
Org Process Res Dev ; 20(2): 215-226, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-27065720

ABSTRACT

A stereoselective aza-Henry reaction between an arylnitromethane and Boc-protected aryl aldimine using a homogeneous Brønsted acid-base catalyst was translated from batch format to an automated intermittent-flow process. This work demonstrates the advantages of a novel intermittent-flow setup with product crystallization and slow reagent addition which is not amenable to the standard continuous equipment: plug flow tube reactor (PFR) or continuous stirred tank reactor (CSTR). A significant benefit of this strategy was the integration of an organocatalytic enantioselective reaction with straightforward product separation, including recycle of the catalyst, resulting in increased intensity of the process by maintaining high catalyst concentration in the reactor. A continuous campaign confirmed that these conditions could effectively provide high throughput of material using an automated system while maintaining high selectivity, thereby addressing nitroalkane safety and minimizing catalyst usage.

9.
J Pharm Sci ; 104(3): 781-791, 2015 Mar.
Article in English | MEDLINE | ID: mdl-28756840

ABSTRACT

This whitepaper highlights current challenges and opportunities associated with continuous synthesis, workup, and crystallization of active pharmaceutical ingredients (drug substances). We describe the technologies and requirements at each stage and emphasize the different considerations for developing continuous processes compared with batch. In addition to the specific sequence of operations required to deliver the necessary chemical and physical transformations for continuous drug substance manufacture, consideration is also given to how adoption of continuous technologies may impact different manufacturing stages in development from discovery, process development, through scale-up and into full scale production. The impact of continuous manufacture on drug substance quality and the associated challenges for control and for process safety are also emphasized. In addition to the technology and operational considerations necessary for the adoption of continuous manufacturing (CM), this whitepaper also addresses the cultural, as well as skills and training, challenges that will need to be met by support from organizations in order to accommodate the new work flows. Specific action items for industry leaders are.

10.
J Pharm Sci ; 104(3): 781-91, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25470351

ABSTRACT

This whitepaper highlights current challenges and opportunities associated with continuous synthesis, workup, and crystallization of active pharmaceutical ingredients (drug substances). We describe the technologies and requirements at each stage and emphasize the different considerations for developing continuous processes compared with batch. In addition to the specific sequence of operations required to deliver the necessary chemical and physical transformations for continuous drug substance manufacture, consideration is also given to how adoption of continuous technologies may impact different manufacturing stages in development from discovery, process development, through scale-up and into full scale production. The impact of continuous manufacture on drug substance quality and the associated challenges for control and for process safety are also emphasized. In addition to the technology and operational considerations necessary for the adoption of continuous manufacturing (CM), this whitepaper also addresses the cultural, as well as skills and training, challenges that will need to be met by support from organizations in order to accommodate the new work flows. Specific action items for industry leaders are: Develop flow chemistry toolboxes, exploiting the advantages of flow processing and including highly selective chemistries that allow use of simple and effective continuous workup technologies. Availability of modular or plug and play type equipment especially for workup to assist in straightforward deployment in the laboratory. As with learning from other industries, standardization is highly desirable and will require cooperation across industry and academia to develop and implement. Implement and exploit process analytical technologies (PAT) for real-time dynamic control of continuous processes. Develop modeling and simulation techniques to support continuous process development and control. Progress is required in multiphase systems such as crystallization. Involve all parts of the organization from discovery, research and development, and manufacturing in the implementation of CM. Engage with academia to develop the training provision to support the skills base for CM, particularly in flow chemistry, physical chemistry, and chemical engineering skills at the chemistry-process interface. Promote and encourage publication and dissemination of examples of CM across the sector to demonstrate capability, engage with regulatory comment, and establish benchmarks for performance and highlight challenges. Develop the economic case for CM of drug substance. This will involve various stakeholders at project and business level, however establishing the critical economic drivers is critical to driving the transformation in manufacturing.


Subject(s)
Drug Industry/methods , Pharmaceutical Preparations/chemical synthesis , Technology, Pharmaceutical/methods , Workflow , Automation , Chemistry, Pharmaceutical , Cooperative Behavior , Crystallization , Drug Industry/instrumentation , Drug Industry/standards , Drug Industry/trends , Equipment Design , Humans , Interdisciplinary Communication , Organizational Culture , Pharmaceutical Preparations/standards , Quality Control , Technology, Pharmaceutical/instrumentation , Technology, Pharmaceutical/standards , Technology, Pharmaceutical/trends
11.
Biosensors (Basel) ; 3(4): 360-73, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-25586412

ABSTRACT

We demonstrate a fluorescence lateral flow system that has excellent sensitivity and wide dynamic range. The illumination system utilizes an LED, plastic lenses and plastic and colored glass filters for the excitation and emission light. Images are collected on an iPhone 4. Several fluorescent dyes with long Stokes shifts were evaluated for their signal and nonspecific binding in lateral flow. A wide range of values for the ratio of signal to nonspecific binding was found, from 50 for R-phycoerythrin (R-PE) to 0.15 for Brilliant Violet 605. The long Stokes shift of R-PE allowed the use of inexpensive plastic filters rather than costly interference filters to block the LED light. Fluorescence detection with R-PE and absorbance detection with colloidal gold were directly compared in lateral flow using biotinylated bovine serum albumen (BSA) as the analyte. Fluorescence provided linear data over a range of 0.4-4,000 ng/mL with a 1,000-fold signal change while colloidal gold provided non-linear data over a range of 16-4,000 ng/mL with a 10-fold signal change. A comparison using human chorionic gonadotropin (hCG) as the analyte showed a similar advantage in the fluorescent system. We believe our inexpensive yet high-performance platform will be useful for providing quantitative and sensitive detection in a point-of-care setting.

12.
Green Chem ; 12(8): 1180-1186, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20694169

ABSTRACT

The synthetic scope and utility of Pd-catalyzed aerobic oxidation reactions has advanced significantly over the past decade, and these reactions have potential to address important green-chemistry challenges in the pharmaceutical industry. This potential has been unrealized, however, because safety concerns and process constraints hinder large-scale applications of this chemistry. These limitations are addressed by the development of a continuous-flow tube reactor, which has been demonstrated on several scales in the aerobic oxidation of alcohols. Use of a dilute oxygen gas source (8% O(2) in N(2)) ensures that the oxygen/organic mixture never enters the explosive regime, and efficient gas-liquid mixing in the reactor minimizes decomposition of the homogeneous catalyst into inactive Pd metal. These results provide the basis for large-scale implementation of palladium-catalyzed (and other) aerobic oxidation reactions for pharmaceutical synthesis.

13.
Crit Rev Microbiol ; 31(4): 233-54, 2005.
Article in English | MEDLINE | ID: mdl-16417203

ABSTRACT

Because of the availability of pathogenic microorganisms and the relatively low cost of preparing and disseminating bioweapons, there is a continuing threat of biocrime and bioterrorism. Thus, enhanced capabilities are needed that enable the full and robust forensic exploitation and interpretation of microbial evidence from acts of bioterrorism or biocrimes. To respond to the need, greater resources and efforts are being applied to the burgeoning field of microbial forensics. Microbial forensics focuses on the characterization, analysis and interpretation of evidence for attributional purposes from a bioterrorism act, biocrime, hoax or inadvertent agent release. To enhance attribution capabilities, a major component of microbial forensics is the analysis of nucleic acids to associate or eliminate putative samples. The degree that attribution can be addressed depends on the context of the case, the available knowledge of the genetics, phylogeny, and ecology of the target microorganism, and technologies applied. The types of genetic markers and features that can impact statistical inferences of microbial forensic evidence include: single nucleotide polymorphisms, repetitive sequences, insertions and deletions, mobile elements, pathogenicity islands, virulence and resistance genes, house keeping genes, structural genes, whole genome sequences, asexual and sexual reproduction, horizontal gene transfer, conjugation, transduction, lysogeny, gene conversion, recombination, gene duplication, rearrangements, and mutational hotspots. Nucleic acid based typing technologies include: PCR, real-time PCR, MLST, MLVA, whole genome sequencing, and microarrays.


Subject(s)
Bacterial Typing Techniques , DNA, Bacterial/analysis , Forensic Medicine , Microbiology , Bioterrorism , Humans , Microbiological Techniques , Nucleic Acid Amplification Techniques , Oligonucleotide Array Sequence Analysis/instrumentation , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, DNA
14.
Proc Natl Acad Sci U S A ; 101(39): 14040-4, 2004 Sep 28.
Article in English | MEDLINE | ID: mdl-15383659

ABSTRACT

Single-nucleotide polymorphisms are the largest source of genetic variation in humans. We report a method for the discovery of single-nucleotide polymorphisms within genomic DNA. Pooled genomic samples are amplified, denatured, and annealed to generate mismatches at polymorphic DNA sites. Upon photoactivation, these DNA mismatches are then cleaved site-specifically by using a small molecular probe, a bulky metallointercalator, Rhchrysi or Rhphzi. Fluorescent labeling of the cleaved products and separation by capillary electrophoresis permits rapid identification with single-base resolution of the single-nucleotide polymorphism site. This method is remarkably sensitive and minor allele frequencies as low as 5% can be readily detected.


Subject(s)
DNA/genetics , DNA/radiation effects , Polymorphism, Single Nucleotide/genetics , Animals , Base Pair Mismatch/genetics , Base Sequence , Cattle , Electrophoresis, Capillary , Gene Frequency/genetics , Genetic Techniques , Humans , Molecular Sequence Data , Organometallic Compounds/chemistry , Organometallic Compounds/radiation effects , Photolysis , Plasmids/genetics , Polymorphism, Single Nucleotide/radiation effects , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/radiation effects , Ruthenium Compounds/chemistry , Ruthenium Compounds/radiation effects , Templates, Genetic , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/radiation effects
15.
Environ Sci Technol ; 36(16): 3625-34, 2002 Aug 15.
Article in English | MEDLINE | ID: mdl-12214658

ABSTRACT

Soil and sediment materials having organic matter matrixes of different geochemical character were examined with respect to their sorption and desorption of phenanthrene in the presence of order-of-magnitude larger concentrations of trichloroethylene (TCE) and dichlorobenzene (DCB). These co-contaminants depressed phenanthrene sorption in the lowest residual solution phase concentration ranges of that target solute investigated, whereas in its highest residual concentration regions phenanthrene sorption was either not affected or was actually enhanced. In both concentration ranges, the effects observed varied with the hydrophobicity and relative concentration of the co-contaminant and with the geological maturity and associated degree of condensation and aromatization of the soil/sediment organic matter (SOM). Desorption isotherms for phenanthrene indicate the occurrence of increased hysteresis in the presence of high concentrations of DCB and TCE, the effect increasing with increased degree of associated organic condensation. Tests in which high concentrations of DCB and TCE were added after completion of the phenanthrene desorption experiments show clear evidence of partial displacement of sorbed phenanthrene to the solution phase. The results of the work support the concept of SOM glass-transition concentrations, above which matrix deformation occurs and so-called "conditioning effects" are observed.


Subject(s)
Geologic Sediments/chemistry , Models, Chemical , Phenanthrenes/chemistry , Soil Pollutants/analysis , Adsorption , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...