Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Anal Chem ; 93(41): 13935-13944, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34606247

ABSTRACT

Modulating optoelectronic properties of inorganic nanostructures tethered with light-responsive molecular switches by their conformational change in the solid state is fundamentally important for advanced nanoscale-device fabrication, specifically in biosensing applications. Herein, we present an entirely new solid-state design approach employing the light-induced reversible conformational change of spiropyran (SP)-merocyanine (MC) covalently attached to gold triangular nanoprisms (Au TNPs) via alkylthiolate self-assembled monolayers to produce a large localized surface plasmon resonance response (∼24 nm). This shift is consistent with the increase in thickness of the local dielectric shell-surrounded TNPs and perhaps short-range dipole-dipole (permanent and induced) interactions between TNPs and the zwitterionic MC form. Water contact angle measurement and Raman spectroscopy characterization unequivocally prove the formation of a stable TNP-MC structural motif. Utilizing this form, we fabricated the first adaptable nanoplasmonic biosensor, which uses an identical structural motif for ultrasensitive, highly specific, and programmable detection of microRNAs and proteins at attomolar concentrations in standard human plasma and urine samples, and at femtomolar concentrations from bladder cancer patient plasma (n = 10) and urine (n = 10), respectively. Most importantly, the TNP-MC structural motif displays a strong binding affinity with receptor molecules (i.e., single-stranded DNA and antibody) producing a highly stable biosensor. Taken together, the TNP-MC structural motif represents a multifunctional super biosensor with the potential to expand clinical diagnostics through simplifying biosensor design and providing highly accurate disease diagnosis.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , MicroRNAs , Gold , Humans , Surface Plasmon Resonance
2.
Analyst ; 145(12): 4173-4180, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32490854

ABSTRACT

Studies have shown that microRNAs, which are small noncoding RNAs, hold tremendous promise as next-generation circulating biomarkers for early cancer detection via liquid biopsies. A novel, solid-state nanoplasmonic sensor capable of assaying circulating microRNAs through a combined surface-enhanced Raman scattering (SERS) and plasmon-enhanced fluorescence (PEF) approach has been developed. Here, the unique localized surface plasmon resonance properties of chemically-synthesized gold triangular nanoprisms (Au TNPs) are utilized to create large SERS and PEF enhancements. With careful modification to the surface of Au TNPs, this sensing approach is capable of quantifying circulating microRNAs at femtogram/microliter concentrations. Uniquely, the multimodal analytical methods mitigate both false positive and false negative responses and demonstrate the high stability of our sensors within bodily fluids. As a proof of concept, microRNA-10b and microRNA-96 were directly assayed from the plasma of six bladder cancer patients. Results show potential for a highly specific liquid biopsy method that could be used in point-of-care clinical diagnostics to increase early cancer detection or any other diseases including SARS-CoV-2 in which RNAs can be used as biomarkers.


Subject(s)
Circulating MicroRNA/blood , Fluorescent Dyes/chemistry , Spectrum Analysis, Raman , Urinary Bladder Neoplasms/diagnosis , Betacoronavirus/isolation & purification , Biomarkers, Tumor/blood , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Coronavirus Infections/virology , Gold/chemistry , Humans , Limit of Detection , Microscopy, Confocal , Nanostructures/chemistry , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Point-of-Care Systems , SARS-CoV-2 , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
3.
Phys Rev E ; 101(3-1): 032416, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32289994

ABSTRACT

Temperature-controlled polarization modulation near-field scanning optical microscopy measurements of a single supported L_{ß^{'}} 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayer are presented. The effective retardance (S=2π(n_{e}-n_{o})t/λ, where t is the thickness of the bilayer and λ is the wavelength of light used) and the direction of the projection of the acyl chains (θ) were measured simultaneously. We demonstrate how one is able to align the system over the sample and measure a relative retardance ΔS, a crucial step in performing temperature-controlled experiments. Maps of ΔS and θ, with a lateral resolution on the order of ∼100 nm are presented, highlighting variations deriving from changes in the average molecular orientation across a lipid membrane at room temperature. A discussion of how this information can be used to map the average three-dimensional orientation of the molecules is presented. From ΔS and the known thickness of the membrane t the birefringence (n_{e}-n_{o}) of the bilayer was determined. Temperature-controlled measurements yielded a change of ΔS∼(3.8±0.3) mrad at the main transition temperature (T_{m}∼41^{∘}C) of a single planar bilayer of DPPC, where the membrane transitioned between the gel L_{ß^{'}} to liquid disorder L_{α} state. The result agrees well with previous values of (n_{e}-n_{o}) in the L_{ß^{'}} phase and translates to an assumed average acyl chain orientation relative to the membrane normal (〈ϕ〉∼32^{∘}) when TT_{m}. Evidence of super heating and cooling are presented. A discussion on how the observed behavior as T_{m} is approached, could relate to the existence of varying microconfigurations within the lipid bilyer are presented. This conversation includes ideas from a Landau-Ginzburg picture of first-order phase transitions in nematic-to-isotropic systems.

4.
Nano Lett ; 20(1): 192-200, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31765167

ABSTRACT

Ligand-controlled tuning of localized surface plasmon resonance (LSPR) properties of noble metal nanostructures is fundamentally important for various optoelectronic applications such as photocatalysis, photovoltaics, and sensing. Here we demonstrate that the free carrier concentration of gold triangular nanoprisms (Au TNPs) can be tuned up to 12% upon functionalization of their surface with different para-substituted thiophenolate (X-Ph-S-) ligands. We achieve this unprecedentedly large optical response (plasmoelectric effect) in TNPs through the selective manipulation of electronic processes at the Au-thiolate interface. Interestingly, thiophenolates with electron withdrawing (donating) groups (X) produce λLSPR blue (red) shifts with broadening (narrowing) of localized surface plasmon resonance peak (λLSPR) line widths. Surprisingly, these experimental results are opposite to a straightforward application of the Drude model. Utilizing density functional theory calculations, we develop here a frontier molecular orbital approach of Au-thiophenolate interactions in the solid-state to delineate the observed spectral response. Importantly, all the spectroscopic properties are fully reversible by exchanging thiophenolates containing electron withdrawing groups with thiophenolates having electron donating groups, and vice versa. On the basis of the experimental data and calculations, we propose that the delocalization of electrons wave function controls the free carrier concentration of Au and thus the LSPR properties rather than simple electronic properties (inductive and/or resonance effects) of thiophenolates. This is further supported by the experimentally determined work functions, which are tunable over 1.9 eV in the X-Ph-S-passivated Au TNPs. We believe that our unexpected finding has great potential to guide in developing unique noble metal nanostructure-organic ligand hybrid nanoconjugates, which could allow us to bypass the complications associated with off-resonance LSPR activation of noble metal-doped semiconductor nanocrystals for various surface plasmon-driven applications.

5.
Biomaterials ; 84: 86-98, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26826298

ABSTRACT

Nanoparticle-mediated siRNA delivery is a promising therapeutic approach, however, the processes required for transport of these materials across the numerous extracellular and intracellular barriers are poorly understood. Efficient delivery of siRNA-containing nanoparticles would ultimately benefit from an improved understanding of how parameters associated with these barriers relate to the physicochemical properties of the nanoparticle vectors. We report the synthesis of three Pluronic(®)-based, cholesterol end-capped cationic polyrotaxanes (PR(+)) threaded with 2-hydroxypropyl-ß-cyclodextrin (HPßCD) for siRNA delivery. The biological data showed that PR(+):siRNA complexes were well tolerated (∼90% cell viability) and produced efficient silencing (>80%) in HeLa-GFP and NIH 3T3-GFP cell lines. We further used a multi-parametric approach to identify relationships between the PR(+) structure, PR(+):siRNA complex physical properties, and biological activity. Small angle X-ray scattering and cryoelectron microscopy studies reveal periodicity and lamellar architectures for PR(+):siRNA complexes, whereas the biological assays, ζ potential measurements, and imaging studies suggest that silencing efficiency is influenced by the effective charge ratio (ρeff), polypropylene oxide (PO) block length, and central PO block coverage (i.e., rigidity) of the PR(+) core. We infer from our findings that more compact PR(+):siRNA nanostructures arising from lower molecular weight, rigid rod-like PR(+) polymer cores produce improved silencing efficiency relative to higher molecular weight, more flexible PR(+) vectors of similar effective charge. This study demonstrates that PR(+):siRNA complex formulations can be produced having higher performance than Lipofectamine(®) 2000, while maintaining good cell viability and siRNA sequence protection in cell culture.


Subject(s)
Cyclodextrins/chemistry , Genetic Vectors/metabolism , Poloxamer/chemistry , Polyethylene Glycols/chemistry , Propylene Glycols/chemistry , RNA, Small Interfering/metabolism , Rotaxanes/chemistry , beta-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin , Animals , Cell Death , Cell Survival , DNA/metabolism , Flow Cytometry , Gene Knockdown Techniques , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Mice , NIH 3T3 Cells , Plasmids/metabolism , Polyethylene Glycols/chemical synthesis , Propylene Glycols/chemical synthesis , RNA Interference , Static Electricity , Structure-Activity Relationship , beta-Cyclodextrins/chemical synthesis
6.
Nanoscale ; 7(27): 11667-77, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26098759

ABSTRACT

Strong inter-nanocrystal electronic coupling is a prerequisite for delocalization of exciton wave functions and high conductivity. We report 170 meV electronic coupling energy of short chain poly(ethylene glycol) thiolate-coated ultrasmall (<2.5 nm in diameter) CdSe semiconductor nanocrystals (SNCs) in solution. Cryo-transmission electron microscopy analysis showed the formation of a pearl-necklace assembly of nanocrystals in solution with regular inter-nanocrystal spacing. The electronic coupling was studied as a function of CdSe nanocrystal size where the smallest nanocrystals exhibited the largest coupling energy. The electronic coupling in spin-cast thin-film (<200 nm in thickness) of poly(ethylene glycol) thiolate-coated CdSe SNCs was studied as a function of annealing temperature, where an unprecedentedly large, ∼400 meV coupling energy was observed for 1.6 nm diameter SNCs, which were coated with a thin layer of poly(ethylene glycol) thiolates. Small-angle X-ray scattering measurements showed that CdSe SNCs maintained an order array inside the films. The strong electronic coupling of SNCs in a self-organized film could facilitate the large-scale production of highly efficient electronic materials for advanced optoelectronic device application.

7.
J Membr Biol ; 248(4): 695-703, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25691267

ABSTRACT

We show that the interaction of aromatic amino acids with lipid bilayers can be characterized by conventional 1D [Formula: see text]H NMR spectroscopy using reference spectra obtained in isopropanol-d8/D[Formula: see text]O solutions. We demonstrate the utility of this method with three different peptides containing tyrosine, tryptophan, or phenylalanine amino acids in the presence of 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphoserine lipid membranes. In each case, we determine an equivalent isopropanol concentration (EIC) for each hydrogen site of aromatic groups, in essence constructing a map of the chemical environment. These EIC maps provide information on relative affinities of aromatic side chains for either PC or PS bilayers and also inform on amino acid orientation preference when bound to membranes.


Subject(s)
2-Propanol/chemistry , Glycerylphosphorylcholine/analogs & derivatives , Phenylalanine/chemistry , Phosphatidylserines/chemistry , Tryptophan/chemistry , Tyrosine/chemistry , Glycerylphosphorylcholine/chemistry , Magnetic Resonance Spectroscopy , Phosphatidylcholines
8.
Nano Lett ; 14(12): 6955-63, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25379951

ABSTRACT

MicroRNAs (miRs) are small noncoding RNAs that regulate mRNA stability and/or translation. Because of their release into the circulation and their remarkable stability, miR levels in plasma and other biological fluids can serve as diagnostic and prognostic disease biomarkers. However, quantifying miRs in the circulation is challenging due to issues with sensitivity and specificity. This Letter describes for the first time the design and characterization of a regenerative, solid-state localized surface plasmon resonance (LSPR) sensor based on highly sensitive nanostructures (gold nanoprisms) that obviates the need for labels or amplification of the miRs. Our direct hybridization approach has enabled the detection of subfemtomolar concentration of miR-X (X = 21 and 10b) in human plasma in pancreatic cancer patients. Our LSPR-based measurements showed that the miR levels measured directly in patient plasma were at least 2-fold higher than following RNA extraction and quantification by reverse transcriptase-polymerase chain reaction. Through LSPR-based measurements we have shown nearly 4-fold higher concentrations of miR-10b than miR-21 in plasma of pancreatic cancer patients. We propose that our highly sensitive and selective detection approach for assaying miRs in plasma can be applied to many cancer types and disease states and should allow a rational approach for testing the utility of miRs as markers for early disease diagnosis and prognosis, which could allow for the design of effective individualized therapeutic approaches.


Subject(s)
Biomarkers, Tumor/blood , Biosensing Techniques/instrumentation , MicroRNAs/blood , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/metabolism , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microchemistry/instrumentation , Pancreatic Neoplasms/genetics , Reproducibility of Results , Sensitivity and Specificity
9.
Langmuir ; 30(33): 9880-5, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25102340

ABSTRACT

Recent literature has shown that buffers affect the interaction between lipid bilayers through a mechanism that involves van der Waals forces, electrostatics, hydration forces and membrane bending rigidity. This letter shows an additional peculiar effect of buffers on the mixed chain 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers, namely phase coexistence similar to what was reported by Rappolt et al. for alkali chlorides. The data presented suggest that one phase appears to dehydrate below the value in pure water, while the other phase swells as the concentration of buffer is increased. However, since the two phases must be in osmotic equilibrium with one another, this behavior challenges theoretical models of lipid interactions.


Subject(s)
Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry
10.
Nano Lett ; 14(2): 532-40, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24393014

ABSTRACT

This Letter describes an unprecedentedly large and photoreversible localized surface plasmon resonance (LSPR) wavelength shift caused by photoisomerization of azobenzenes attached to gold nanoprisms that act as nanoantennas. The blue light-induced cis to trans azobenzene conformational change occurs in the solid state and controls the optical properties of the nanoprisms shifting their LSPR peak up to 21 nm toward longer wavelengths. This shift is consistent with the increase in thickness of the local dielectric environment (0.6 nm) surrounding the nanoprism and perhaps a contribution from plasmonic energy transfer between the nanoprism and azobenzenes. The effects of the azobenzene conformational change and its photoreversibility were also probed through surface-enhanced Raman spectroscopy (SERS) showing that the electronic interaction between the nanoprisms and bound azobenzenes in their cis conformation significantly enhances the intensity of the Raman bands of the azobenzenes. The SERS data suggests that the isomerization is controlled by first-order kinetics with a rate constant of 1.0 × 10(-4) s(-1). Our demonstration of light-induced photoreversibility of this type of molecular machine is the first-step toward removing present limitations on detection of molecular motion in solid-state devices using LSPR spectroscopy with nanoprisms. Modulating the LSPR peak position and controlling energy transfer across the nanostructure-organic molecule interface are very important for the fabrication of plasmonic-based nanoscale devices.

11.
Soft Matter ; 9(40): 9643-50, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-26029773

ABSTRACT

The current study reports on the layer-by-layer assembly of a polymer-tethered lipid multi-bilayer stack using the iterative addition and roll out of giant unilamellar vesicles (GUVs) containing constituents with thiol and maleimide functional groups, respectively. Confocal microscopy and photobleaching experiments confirm stack integrity and stability over time, as well as the lateral fluidity of individual bilayers within the stacks. Complementary wide-field single molecule fluorescence microscopy and atomic force microscopy experiments show that increasing bilayer-substrate distances are associated with changes in lipid lateral mobility and bilayer morphology. Importantly, the described iterative approach can be employed to assemble multi-bilayer stacks with more than two bilayers, thus further reducing the influence of the underlying solid substrate on membrane behavior. Furthermore, the presence of lipopolymers within the multi-bilayer stacks results in fascinating membrane dynamics and organization properties, with interesting parallels to those found in plasma membranes. In that sense, the described multi-bilayer architecture represents an attractive model membrane platform for a variety of different biophysical studies.


Subject(s)
Lipid Bilayers/chemistry , Maleimides/chemistry , Sulfhydryl Compounds/chemistry , Unilamellar Liposomes/chemistry , Biophysical Phenomena , Microscopy, Confocal , Photobleaching
SELECTION OF CITATIONS
SEARCH DETAIL
...