Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38591846

ABSTRACT

Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming, which allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified Zinc Finger Protein 397 (ZNF397) as a bona fide coactivator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a Ten-Eleven Translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that a TET2 inhibitor can eliminate the resistance to AR targeted therapies in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate cancer acquires lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity.

2.
Oncogene ; 43(4): 265-280, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030789

ABSTRACT

Prostate cancer (PCa) is primarily driven by aberrant Androgen Receptor (AR) signaling. Although there has been substantial advancement in antiandrogen therapies, resistance to these treatments remains a significant obstacle, often marked by continuous or enhanced AR signaling in resistant tumors. While the dysregulation of the ubiquitination-based protein degradation process is instrumental in the accumulation of oncogenic proteins, including AR, the molecular mechanism of ubiquitination-driven AR degradation remains largely undefined. We identified UBE2J1 as the critical E2 ubiquitin-conjugating enzyme responsible for guiding AR ubiquitination and eventual degradation. The absence of UBE2J1, found in 5-15% of PCa patients, results in disrupted AR ubiquitination and degradation. This disruption leads to an accumulation of AR proteins, promoting resistance to antiandrogen treatments. By employing a ubiquitination-based AR degrader to adeptly restore AR ubiquitination, we reestablished AR degradation and inhibited the proliferation of antiandrogen-resistant PCa tumors. These findings underscore the fundamental role of UBE2J1 in AR degradation and illuminate an uncharted mechanism through which PCa maintains heightened AR protein levels, fostering resistance to antiandrogen therapies.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Proteolysis , Receptors, Androgen , Ubiquitin-Conjugating Enzymes , Humans , Male , Androgen Antagonists/pharmacology , Androgens , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
3.
bioRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961351

ABSTRACT

Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming, which allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified Zinc Finger Protein 397 (ZNF397) as a bona fide co-activator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a Ten-Eleven Translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that TET2 inhibitor can eliminate the AR targeted therapies resistance in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate and breast cancers acquire lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity. Statement of Significance: This study reveals a novel epigenetic mechanism regulating tumor lineage plasticity and therapy response, enhances understanding of drug resistance and unveils a new therapeutic strategy for prostate cancer and other malignancies. Our findings also illuminate TET2's oncogenic role and mechanistically connect TET2-driven epigenetic rewiring to lineage plasticity and therapy resistance.

4.
Cancer Cell ; 41(8): 1427-1449.e12, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37478850

ABSTRACT

Tumor mutational burden and heterogeneity has been suggested to fuel resistance to many targeted therapies. The cytosine deaminase APOBEC proteins have been implicated in the mutational signatures of more than 70% of human cancers. However, the mechanism underlying how cancer cells hijack the APOBEC mediated mutagenesis machinery to promote tumor heterogeneity, and thereby foster therapy resistance remains unclear. We identify SYNCRIP as an endogenous molecular brake which suppresses APOBEC-driven mutagenesis in prostate cancer (PCa). Overactivated APOBEC3B, in SYNCRIP-deficient PCa cells, is a key mutator, representing the molecular source of driver mutations in some frequently mutated genes in PCa, including FOXA1, EP300. Functional screening identifies eight crucial drivers for androgen receptor (AR)-targeted therapy resistance in PCa that are mutated by APOBEC3B: BRD7, CBX8, EP300, FOXA1, HDAC5, HSF4, STAT3, and AR. These results uncover a cell-intrinsic mechanism that unleashes APOBEC-driven mutagenesis, which plays a significant role in conferring AR-targeted therapy resistance in PCa.


Subject(s)
Prostatic Neoplasms , Male , Humans , Mutagenesis , Mutation , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Chromosomal Proteins, Non-Histone , Heterogeneous-Nuclear Ribonucleoproteins , Cytidine Deaminase , Minor Histocompatibility Antigens , Polycomb Repressive Complex 1
6.
Nat Cancer ; 3(9): 1071-1087, 2022 09.
Article in English | MEDLINE | ID: mdl-36065066

ABSTRACT

Emerging evidence indicates that various cancers can gain resistance to targeted therapies by acquiring lineage plasticity. Although various genomic and transcriptomic aberrations correlate with lineage plasticity, the molecular mechanisms enabling the acquisition of lineage plasticity have not been fully elucidated. We reveal that Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling is a crucial executor in promoting lineage plasticity-driven androgen receptor (AR)-targeted therapy resistance in prostate cancer. Importantly, ectopic JAK-STAT activation is specifically required for the resistance of stem-like subclones expressing multilineage transcriptional programs but not subclones exclusively expressing the neuroendocrine-like lineage program. Both genetic and pharmaceutical inhibition of JAK-STAT signaling resensitizes resistant tumors to AR-targeted therapy. Together, these results suggest that JAK-STAT are compelling therapeutic targets for overcoming lineage plasticity-driven AR-targeted therapy resistance.


Subject(s)
Janus Kinases , Prostatic Neoplasms , Humans , Janus Kinases/genetics , Male , Pharmaceutical Preparations , Receptors, Androgen/genetics , STAT Transcription Factors/genetics
7.
Cancer Cell ; 37(4): 584-598.e11, 2020 04 13.
Article in English | MEDLINE | ID: mdl-32220301

ABSTRACT

Metastatic prostate cancer is characterized by recurrent genomic copy number alterations that are presumed to contribute to resistance to hormone therapy. We identified CHD1 loss as a cause of antiandrogen resistance in an in vivo small hairpin RNA (shRNA) screen of 730 genes deleted in prostate cancer. ATAC-seq and RNA-seq analyses showed that CHD1 loss resulted in global changes in open and closed chromatin with associated transcriptomic changes. Integrative analysis of this data, together with CRISPR-based functional screening, identified four transcription factors (NR3C1, POU3F2, NR2F1, and TBX2) that contribute to antiandrogen resistance, with associated activation of non-luminal lineage programs. Thus, CHD1 loss results in chromatin dysregulation, thereby establishing a state of transcriptional plasticity that enables the emergence of antiandrogen resistance through heterogeneous mechanisms.


Subject(s)
Androgen Antagonists/pharmacology , Chromatin/genetics , DNA Helicases/antagonists & inhibitors , DNA-Binding Proteins/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , RNA, Small Interfering/genetics , Receptors, Androgen/chemistry , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Chromatin/metabolism , DNA Helicases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , High-Throughput Screening Assays , Humans , Male , Mice , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/genetics , Transcription Factors/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...