Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(11): 2781-2784, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37262209

ABSTRACT

Chip-based, single-frequency and low phase-noise integrated photonic laser diodes emitting in the violet (412 nm) and blue (461 nm) regime are demonstrated. The GaN-based edge-emitting laser diodes were coupled to high-quality on-chip micro-resonators for optical feedback and mode selection resulting in laser self-injection locking with narrow emission linewidth. Multiple group III-nitride (III-N) based photonic integrated circuit chips with different waveguide designs including single-crystalline AlN, AlGaN, and GaN were developed and characterized. Single-frequency laser operation was demonstrated for all studied waveguide core materials. The best side-mode suppression ratio was determined to be ∼36 dB at 412 nm with a single-frequency laser emission linewidth of only 3.8 MHz at 461 nm. The performance metrics of this novel, to the best of our knowledge, type of laser suggest potential implementation in next-generation, portable quantum systems.

2.
Lab Chip ; 12(23): 5057-62, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23044636

ABSTRACT

We describe an optical detection technique that delivers high signal-to-noise discrimination to enable a multi-parameter flow cytometer that combines high performance, robustness, compactness and low cost. The enabling technique is termed "spatially modulated detection" and generates a time-dependent signal as a continuously fluorescing (bio-) particle traverses an optical transmission pattern along the fluidic channel. Correlating the detected signal with the expected transmission pattern achieves high discrimination of the particle signal from background noise. Additionally, the particle speed and its fluorescence emission characteristics are deduced from the correlation analysis. Our method uses a large excitation/emission volume along the fluidic channel in order to increase the total flux of fluorescence light that originates from a particle while requiring minimal optical alignment. Despite the large excitation/detection volume, the mask pattern enables a high spatial resolution in the micron range. This allows for detection and characterization of particles with a separation (in flow direction) comparable to the dimension of individual particles. In addition, the concept is intrinsically tolerant of non-encoded background fluorescence originating from fluorescent components in solution, fluorescing components of the chamber and contaminants on its surface. The optical detection technique is illustrated with experimental results of multicolor detection with a single large area detector by filtering fluorescence emission of different particles through a patterned color mask. Thereby the particles' fluorescence emission spectrum is encoded in a time dependent intensity signal and color information can be extracted from the correlation analysis. The multicolor detection technique is demonstrated by differentiation of micro-beads loaded with PE (Phycoerythrin) and PE-Cy5 that are excited at 532 nm.


Subject(s)
Flow Cytometry/instrumentation , Microfluidic Analytical Techniques/instrumentation , Spectrometry, Fluorescence/instrumentation , Carbocyanines/chemistry , Color , Fluorescent Dyes/chemistry , Phycoerythrin/chemistry , Time Factors
3.
Opt Lett ; 33(6): 605-7, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18347724

ABSTRACT

We demonstrate output wavelength and intensity switching in a three-element directly coupled microdisk device consisting of one spiral microdisk coupled to two semicircle microdisks. The gapless coupling mechanism used allows individual elements to achieve lasing while achieving optimal transfer of optical power between adjacent microdisks. By controlling the transparency of the center element via injection current, the edge elements can be allowed to exchange their amplified spontaneous emission. In this manner, on-off-on switching of the output intensity, as well as discontinuous shifts in the output wavelength, can be achieved as a function of increasing injection current.

SELECTION OF CITATIONS
SEARCH DETAIL
...