Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Contam Hydrol ; 265: 104391, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38936239

ABSTRACT

Natural river flooding events can mobilize contaminants from the vadose zone and lead to increased concentrations in groundwater. Characterizing the mass and transport mechanisms of contaminants released from the vadose zone to groundwater during these recharge events is particularly challenging. Therefore, conducting highly-controlled in-situ experiments that simulate natural flooding events can help increase the knowledge of where contaminants can be stored and how they can move between hydrological compartments. This study specifically targets uranium pollution, which is accompanied by high sulfate levels in the vadose zone and groundwater. Two novel experimental river flooding events were conducted that utilized added non-reactive halides (bromide and iodide) and 2,6-difluorobenzoate tracers. In both experiments, about 8 m3 of traced water from a nearby contaminant-poor river was flooded in a 3-m diameter basin and infiltrated through the vadose zone and into a contaminant-rich unconfined aquifer for an average of 10 days. The aquifer contained 13 temporary wells that were monitored for solute concentration for up to 40 days. The groundwater analysis was conducted for changes in contaminant mass using the Theissen polygon method and for transport mechanisms using temporal moments. The results indicated an increase in uranium (21 and 24%), and sulfate (24 and 25%) contaminant mass transport to groundwater from the vadose zone during both experiments. These findings confirmed that the vadose zone can store and release substantial amounts of contaminants to groundwater during flooding events. Additionally, contaminants were detected earlier than the added tracers, along with higher concentrations. These results suggested that contaminant-rich pore water in the vadose zone was transported ahead of the traced flood waters and into groundwater. During the first flooding event, elevated concentrations of contaminants were sustained, and that chloride behaved similarly. The findings implied that contaminant- and chloride-rich evaporites in the vadose zone were dissolved during the first flooding event. For the second flooding event, the data suggested that the contaminant-rich evaporites continued to dissolve whereas chloride-rich evaporites were previously flushed. Overall, these findings indicated that contaminant-rich pore water and evaporites in the vadose zone can play a significant role in contaminant transport during flooding events.

2.
J Contam Hydrol ; 261: 104298, 2024 02.
Article in English | MEDLINE | ID: mdl-38242064

ABSTRACT

Groundwater contamination at legacy uranium processing sites is an ongoing global challenge. Plumes at many uranium-contaminated sites are more persistent than originally predicted by groundwater modeling. Previous investigations of uranium plume persistence identified residual and secondary sources that contribute to plume longevity, but there is a remaining need to revise forecasted cleanup times using information about these ongoing sources. The purpose of this study is to investigate the quantitative impact of residual vadose zone sources of uranium on groundwater remediation time frame. This objective was approached by applying numerical uranium transport simulations and uncertainty analysis to a former uranium mill site in the southwestern United States. Information from recent site investigations provided details about the distribution and release characteristics of uranium accumulations in the vadose zone. The residual uranium characteristics were incorporated as decaying source terms in the transport model. A stochastic approach using an iterative ensemble smoother was applied for history matching, and the transport model was used to assess the impact of multiple remedial alternatives on forecasted time frame. The forecasted time frame to achieve the groundwater remediation goal for uranium by monitored natural attenuation is on the order of thousands of years, and treatment of the dissolved plume does not reduce the projected time frame. The large proportion of residual uranium mass remaining in the vadose zone and the gradual leaching rate due to the site's semiarid climate create a long-lived source that can sustain a dissolved plume for thousands of years despite an estimated 99% mass removal achieved during mill tailings disposal. Residual uranium in vadose zone sediments beneath former tailings impoundments could present comparable uranium plume persistence and remediation challenges at other legacy uranium mill sites in semiarid climates. Other remaining uranium-impacted sites are similarly complex, and forecasted remedial time frames are needed to effectively achieve compliance, manage risk, assess the benefits of additional treatment, manage and project costs, and support beneficial site reuse.


Subject(s)
Groundwater , Uranium , Water Pollutants, Radioactive , Uranium/analysis , Water Pollutants, Radioactive/analysis
3.
J Contam Hydrol ; 251: 104076, 2022 12.
Article in English | MEDLINE | ID: mdl-36148719

ABSTRACT

The recharge of stream water below the baseflow water table can mobilize groundwater contaminants, particularly redox-sensitive and sorptive metals such as uranium. However, in-situ tracer experiments that simulate the recharge of stream water to uranium-contaminated groundwater are lacking, thus limiting the understanding of the potential mechanisms that control the mobility of uranium at the field scale. In this study, a field tracer test was conducted by injecting 100 gal (379 l) of oxic river water into a nearby suboxic and uranium-contaminated aquifer. The traced river water was monitored for 18 days in the single injection well and in the twelve surrounding observation wells. Mobilization of uranium from the solid to the aqueous phase was not observed during the tracer test despite its pre-test presence being confirmed on the aquifer sediments from lab-based acid leaching. However, strong evidence of oxidative immobilization of iron and manganese was observed during the tracer test and suggested that immobile uranium was likely in its oxidized state as U(VI) on the aquifer sediments; these observations ruled out oxidation of U(IV) to U(VI) as a potential mobilization mechanism. Therefore, desorption of U(VI) appeared to be the predominant potential mobilization mechanism, yet it was clearly not solely dependent on concentration as evident when considering that uranium-poor river water (<0.015 mg/L) was recharged to uranium-rich groundwater (≈1 mg/L). It was possible that uranium desorption was limited by the relatively higher pH and lower alkalinity of the river water as compared to the groundwater; both factors favor immobilization. However, it was likely that the immobile uranium was associated with a mineral phase, as opposed to a sorbed phase, thus desorption may not have been possible. The results of this field tracer study successfully ruled out two common mobilization mechanisms of uranium: (1) oxidative dissolution and (2) concentration-dependent desorption and ruled in the importance of advection, dispersion, and the mineral phase of uranium.


Subject(s)
Groundwater , Uranium , Water Pollutants, Radioactive , Uranium/analysis , Water Pollutants, Radioactive/analysis , Rivers , Minerals , Water , Geologic Sediments
4.
J Environ Manage ; 277: 111416, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33039703

ABSTRACT

The many uses of palladium in medicine, catalysts and other industries make it a very important precious element. Many industries using palladium discharge process wastewaters that may release elevated concentrations of palladium into the environment. This study focused on the recovery of palladium from aqueous solutions by zeolite functionalised with spent brewer's yeast. Batch experimental results were used to calibrate a generalised surface complexation model based on coupling parameter estimation (PEST) to the PHREEQC geochemical modelling code. PHREEQC is an acronym which stands for pH, redox, equilibrium and C programming language. Calibration was based on the determination of sorption constants for the reactions of palladium with the adsorbent. The generalised amine surface groups (derived from yeast), the moles of adsorption sites and surface area were specified. The recovery of palladium was assessed as a function of solution pH, adsorbent dosage and initial concentration of palladium in the presence of other cations and anions at different concentrations. The highest recovery of palladium (>97%) was observed at pH 2 and 10 g L-1 adsorbent dosage which, decreased with increasing solution pH. The amount of palladium removed increased in the presence of competing ions and anions. There was no significant difference (p > 0.05) between the modelled and measured data, which indicated that PHREEQC modelling code coupled with PEST can accurately determine the recovery of palladium using amine-based adsorbents when all the required information is specified. This is very useful in instances where limited experimental data is available for non-conventional and novel surfaces to make accurate predictions of sorption processes involving them.


Subject(s)
Water Pollutants, Chemical , Water Purification , Zeolites , Adsorption , Amines , Hydrogen-Ion Concentration , Kinetics , Palladium
5.
J Contam Hydrol ; 229: 103581, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31810750

ABSTRACT

Characterizing the mobility of uranium and vanadium in groundwater with a hydraulic connection to surface water is important to inform the best management practices of former mill tailing sites. In this study, the recharge of river water to the unsaturated and saturated zones of a uranium-contaminated alluvial aquifer was simulated in a series of forced-gradient single- and multi-well injection-extraction tests. The injection fluid (river water) was traced with natural and artificial tracers that included halides, fluorobenzoates, lithium, and naphthalene sulfonate to characterize the potential mass transport mechanisms of uranium and vanadium. The extraction fluid (river water/groundwater mixture) was analyzed for the tracers, uranium, and vanadium. The results from the tracers indicated that matrix diffusion was likely negligible over the spatiotemporal scales of the tests as evident by nearly identical breakthrough curves of the halides and fluorobenzoates. In contrast, the breakthrough curves of lithium and naphthalene sulfonate indicated that sorption by cation exchange and sorption to organic matter, respectively, were potential mass transport mechanisms of uranium and vanadium. Uranium was mobilized in the saturated zone containing gypsum (gypsum-rich zone), the vadose zone (vadose-rich zone), and the saturated zone containing organic carbon (organic-rich zone) whereas vanadium was mobilized only in the saturated gypsum-rich zone. The mechanisms responsible for the mobilization of uranium and vanadium were likely dissolution of uranium- and vanadium-bearing minerals and/or desorption from the gypsum-rich zone, flushing of uranium from the vadose-rich zone, and desorption of uranium from the organic-rich zone due to the natural contrast in the geochemistry between the river water and groundwater. The experimental design of this study was unique in that it employed the use of multiple natural and artificial tracers coupled with a direct injection of native river water to groundwater. These results demonstrated that natural recharge and flooding events at former mill tailing sites can mobilize uranium, and possibly vanadium, and contribute to persistent levels of groundwater contamination.


Subject(s)
Groundwater , Uranium/analysis , Water Pollutants, Radioactive/analysis , Research Design , Vanadium , Water
6.
J Contam Hydrol ; 213: 28-39, 2018 06.
Article in English | MEDLINE | ID: mdl-29691066

ABSTRACT

This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO3 and 360 mg/l CaCO3) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO3 over columns fed with 160 mg/l CaCO3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 µmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology may play a bigger role in column sorption behavior than actual sediment heterogeneity. Our results demonstrate the necessity for ISR sites to remove residual pCO2 and equilibrate restoration water with background geochemistry to reduce uranium mobility. In addition, the observed variability between fitted parameters on the same sediments highlights the need to provide standardized guidelines and methodology for regulators and industry when the GC SCM approach is used for ISR risk assessments.


Subject(s)
Geologic Sediments/chemistry , Uranium/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Radioactive/analysis , Adsorption , Calcium Carbonate/chemistry , Hydrogen-Ion Concentration , Hydrology/methods , Kinetics , Models, Theoretical , Uncertainty , Uranium/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Radioactive/chemistry , Wyoming , X-Ray Diffraction
7.
J Hazard Mater ; 267: 245-54, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24462894

ABSTRACT

Novel solutions for sulfide-mine tailings remediation were evaluated in field-scale experiments on a former tailings repository in northern Sweden. Uncovered sulfide-tailings were compared to sewage-sludge biosolid amended tailings over 2 years. An application of a 0.2m single-layer sewage-sludge amendment was unsuccessful at preventing oxygen ingress to underlying tailings. It merely slowed the sulfide-oxidation rate by 20%. In addition, sludge-derived metals (Cu, Ni, Fe, and Zn) migrated and precipitated at the tailings-to-sludge interface. By using an additional 0.6m thick fly-ash sealing layer underlying the sewage sludge layer, a solution to mitigate oxygen transport to the underlying tailings and minimize sulfide-oxidation was found. The fly-ash acted as a hardened physical barrier that prevented oxygen diffusion and provided a trap for sludge-borne metals. Nevertheless, the biosolid application hampered the application, despite the advances in the effectiveness of the fly-ash layer, as sludge-borne nitrate leached through the cover system into the underlying tailings, oxidizing pyrite. This created a 0.3m deep oxidized zone in 6-years. This study highlights that using sewage sludge in unconventional cover systems is not always a practical solution for the remediation of sulfide-bearing mine tailings to mitigate against sulfide weathering and acid rock drainage formation.


Subject(s)
Industrial Waste/analysis , Mining , Sulfides/chemistry , Coal Ash/chemistry , Hydrogen-Ion Concentration , Metals/analysis , Metals/chemistry , Oxidation-Reduction , Sewage/analysis , Soil Pollutants/analysis , Sweden , Water Pollutants, Chemical/analysis
8.
J Contam Hydrol ; 89(1-2): 136-55, 2007 Jan 05.
Article in English | MEDLINE | ID: mdl-17050034

ABSTRACT

Perchloroethylene (PCE) saturations determined from GPR surveys were used as observations for inversion of multiphase flow simulations of a PCE injection experiment (Borden 9 m cell), allowing for the estimation of optimal bulk intrinsic permeability values. The resulting fit statistics and analysis of residuals (observed minus simulated PCE saturations) were used to improve the conceptual model. These improvements included adjustment of the elevation of a permeability contrast, use of the van Genuchten versus Brooks-Corey capillary pressure-saturation curve, and a weighting scheme to account for greater measurement error with larger saturation values. A limitation in determining PCE saturations through one-dimensional GPR modeling is non-uniqueness when multiple GPR parameters are unknown (i.e., permittivity, depth, and gain function). Site knowledge, fixing the gain function, and multiphase flow simulations assisted in evaluating non-unique conceptual models of PCE saturation, where depth and layering were reinterpreted to provide alternate conceptual models. Remaining bias in the residuals is attributed to the violation of assumptions in the one-dimensional GPR interpretation (which assumes flat, infinite, horizontal layering) resulting from multidimensional influences that were not included in the conceptual model. While the limitations and errors in using GPR data as observations for inverse multiphase flow simulations are frustrating and difficult to quantify, simulation results indicate that the error and bias in the PCE saturation values are small enough to still provide reasonable optimal permeability values. The effort to improve model fit and reduce residual bias decreases simulation error even for an inversion based on biased observations and provides insight into alternate GPR data interpretations. Thus, this effort is warranted and provides information on bias in the observation data when this bias is otherwise difficult to assess.


Subject(s)
Computer Simulation , Data Collection/methods , Radar , Water Movements , Water Pollutants, Chemical/analysis , Geological Phenomena , Geology , Models, Theoretical , Radar/instrumentation , Research Design , Solvents/chemistry
11.
Occup Health Saf ; 72(5): 44-8, 50, 2003 May.
Article in English | MEDLINE | ID: mdl-12754858

ABSTRACT

As America prepares for homeland security and the response to terrorism, more occupational safety professionals may find themselves called upon to deal with terror in their own neighborhoods. While thousands of safety professionals are well trained technically to deal with many types of terrorism, they may not be well prepared to deal with the greater challenge, namely the terror of terrorism. Dealing with terror requires hearing and responding to people's feelings before providing technical answers. For safety professionals to be most effective in dealing with terrorism, they can benefit from more training on how to deal with terror.


Subject(s)
Fear , Radioactive Hazard Release , Terrorism/psychology , Fear/psychology , Humans , Nuclear Warfare , Occupational Health , Radioactive Hazard Release/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...