Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Anal Chem ; 93(34): 11785-11791, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34406737

ABSTRACT

This paper compares dynamic (i.e., temporally changing) thermal gradient gas chromatography (GC) to temperature-programmed GC using a previously published stochastic transport model to simulate peak characteristics for the separation of C12-C40 hydrocarbons. All comparisons are made using chromatographic conditions that give approximately equal analyte retention times (tR). As shown previously, a static thermal gradient does not improve resolution (Rs) equally for all analytes, which highlights the need for a dynamic thermal gradient. An optimal dynamic thermal gradient should result in constant analyte velocities at any instant in time for those analytes that are actively being separated (i.e., analytes that have low retention factors). The average separation temperature for each analyte is used to determine the thermal gradient profile at different times in the temperature ramp. Because many of the analytes require a similar thermal gradient profile when actively being separated, the thermal gradient profile in this study was held fixed; however, the temperature of the entire thermal gradient was raised over time. From the simulations performed in this study, optimized dynamic thermal gradient conditions are shown to improve Rs by up to 13% over comparative temperature-programmed conditions, even with a perfect injection (i.e., zero injection bandwidth). In the dynamic thermal gradient simulations, all analytes showed improvements in Rs along with slightly shorter tR values compared to simulations for traditional temperature-programmed conditions.


Subject(s)
Temperature , Chromatography, Gas
2.
Anal Chem ; 93(17): 6739-6745, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33885280

ABSTRACT

This paper compares static (i.e., temporally unchanging) thermal gradient gas chromatography (GC) to isothermal GC using a stochastic transport model to simulate peak characteristics for the separation of C12-C14 hydrocarbons resulting from variations in injection bandwidth. All comparisons are made using chromatographic conditions that give approximately equal analyte retention times so that the resolution and number of theoretical plates can be clearly compared between simulations. Simulations show that resolution can be significantly improved using a linear thermal gradient along the entire column length. This is mainly achieved by partially compensating for loss in resolution from the increase in mobile phase velocity, which approximates an ideal, basic separation. The slope of the linear thermal gradient required to maximize resolution is a function of the retention parameters, which are specific to each analyte pair; a single static, thermal gradient will not affect all analytes equally. A static, non-linear thermal gradient that creates constant analyte velocities at all column locations provides the largest observed gains in resolution. From the simulations performed in this study, optimized linear thermal gradient conditions are shown to improve the resolution by as much as 8.8% over comparative isothermal conditions, even with a perfect injection (i.e., zero initial bandwidth).

SELECTION OF CITATIONS
SEARCH DETAIL
...