Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R109-R121, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38766772

ABSTRACT

Rhythmic feeding behavior is critical for regulating phase and amplitude in the ≈24-h variation of heart rate (RR intervals), ventricular repolarization (QT intervals), and core body temperature in mice. We hypothesized changes in cardiac electrophysiology associated with feeding behavior were secondary to changes in core body temperature. Telemetry was used to record electrocardiograms and core body temperature in mice during ad libitum-fed conditions and after inverting normal feeding behavior by restricting food access to the light cycle. Light cycle-restricted feeding modified the phase and amplitude of 24-h rhythms in RR and QT intervals, and core body temperature to realign with the new feeding time. Changes in core body temperature alone could not account for changes in phase and amplitude in the ≈24-h variation of the RR intervals. Heart rate variability analysis and inhibiting ß-adrenergic and muscarinic receptors suggested that changes in the phase and amplitude of 24-h rhythms in RR intervals were secondary to changes in autonomic signaling. In contrast, changes in QT intervals closely mirrored changes in core body temperature. Studies at thermoneutrality confirmed that the daily variation in QT interval, but not RR interval, primarily reflected daily changes in core body temperature (even in ad libitum-fed conditions). Correcting the QT interval for differences in core body temperature helped unmask QT interval prolongation after starting light cycle-restricted feeding and in a mouse model of long QT syndrome. We conclude feeding behavior alters autonomic signaling and core body temperature to regulate phase and amplitude in RR and QT intervals, respectively.NEW & NOTEWORTHY We used time-restricted feeding and thermoneutrality to demonstrate that different mechanisms regulate the 24-h rhythms in heart rate and ventricular repolarization. The daily rhythm in heart rate reflects changes in autonomic input, whereas daily rhythms in ventricular repolarization reflect changes in core body temperature. This novel finding has major implications for understanding 24-h rhythms in mouse cardiac electrophysiology, arrhythmia susceptibility in transgenic mouse models, and interpretability of cardiac electrophysiological data acquired in thermoneutrality.


Subject(s)
Body Temperature , Circadian Rhythm , Feeding Behavior , Heart Rate , Mice, Inbred C57BL , Animals , Circadian Rhythm/physiology , Heart Rate/physiology , Feeding Behavior/physiology , Male , Body Temperature/physiology , Mice , Electrocardiography , Photoperiod , Time Factors , Autonomic Nervous System/physiology
2.
bioRxiv ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38659967

ABSTRACT

It has been well established that cardiovascular diseases exhibit significant differences between sexes in both preclinical models and humans. In addition, there is growing recognition that disrupted circadian rhythms can contribute to the onset and progression of cardiovascular diseases. However little is known about sex differences between the cardiac circadian clock and circadian transcriptomes in mice. Here, we show that the the core clock genes are expressed in common in both sexes but the circadian transcriptome of the mouse heart is very sex-specific. Hearts from female mice expressed significantly more rhythmically expressed genes (REGs) than male hearts and the temporal pattern of REGs was distinctly different between sexes. We next used a cardiomyocyte-specific knock out of the core clock gene, Bmal1, to investigate its role in sex-specific gene expression in the heart. All sex differences in the circadian transcriptomes were significantly diminished with cardiomyocyte-specific loss of Bmal1. Surprisingly, loss of cardiomyocyte Bmal1 also resulted in a roughly 8-fold reduction in the number of all the differentially expressed genes between male and female hearts. We conclude that cardiomyocyte-specific Bmal1, and potentially the core clock mechanism, is vital in conferring sex-specific gene expression in the adult mouse heart.

3.
bioRxiv ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37961515

ABSTRACT

Circadian rhythms in physiology and behavior are intrinsic ~24-hour cycles regulated by biological clocks (i.e., circadian clocks) that optimize organismal homeostasis in response to predictable environmental changes. Studies suggest that circadian clock signaling in the suprachiasmatic nucleus of the hypothalamus and cardiomyocytes shape day/night rhythms in cardiac electrophysiology (i.e., RR and QT intervals). However, studies also show that the day/night rhythm of the RR and QT intervals depends on the timing of feeding in mice. This study determined the mechanisms for how feeding impacts day/night rhythms in the RR and QT intervals in mice. Telemetry was used to record electrocardiograms, core body temperature, and activity in mice during ad libitum-fed conditions and after inverting normal feeding behavior by restricting the timing of feeding to the light cycle. Light-cycle restricted feeding caused a simultaneous realignment of RR, QT, and PR intervals and body temperature to the new feeding time. Correcting the QT interval for body temperature eliminated the 24-hour rhythm in the QT interval. Estimating the impact of temperature on RR intervals did not account for the daily change in the RR interval during light-cycle restricted feeding. Cross-correlation analysis suggested daily rhythm in RR intervals correlated with heart rate variability measures but not activity. Injecting mice undergoing light cycle-restricted feeding with propranolol and atropine caused a complete loss in the 24-hour rhythm in the RR interval. We conclude that feeding behavior impacts body temperature and autonomic regulation of the heart to generate 24-hour rhythms in RR and QT intervals.

4.
J Physiol ; 600(9): 2037-2048, 2022 05.
Article in English | MEDLINE | ID: mdl-35301719

ABSTRACT

Daily variations in cardiac electrophysiology and the incidence for different types of arrhythmias reflect ≈24 h changes in the environment, behaviour and internal circadian rhythms. This article focuses on studies that use animal models to separate the impact that circadian rhythms, as well as changes in the environment and behaviour, have on 24 h rhythms in heart rate and ventricular repolarization. Circadian rhythms are initiated at the cellular level by circadian clocks, transcription-translation feedback loops that cycle with a periodicity of 24 h. Several studies now show that the circadian clock in cardiomyocytes regulates the expression of cardiac ion channels by multiple mechanisms; underlies time-of-day changes in sinoatrial node excitability/intrinsic heart rate; and limits the duration of the ventricular action potential waveform. However, the 24 h rhythms in heart rate and ventricular repolarization are primarily driven by autonomic signalling. A functional role for the cardiomyocyte circadian clock appears to buffer the heart against perturbations. For example, the cardiomyocyte circadian clock limits QT-interval prolongation (especially at slower heart rates), and it may facilitate the realignment of the 24 h rhythm in heart rate to abrupt changes in the light cycle. Additional studies show that modifying rhythmic behaviours (including feeding behaviour) can dramatically impact the 24 h rhythms in heart rate and ventricular repolarization. If these mechanisms are conserved, these studies suggest that targeting endogenous circadian mechanisms in the heart, as well as modifying the timing of certain rhythmic behaviours, could emerge as therapeutic strategies to support heart function against perturbations and regulate 24 h rhythms in cardiac electrophysiology.


Subject(s)
Circadian Clocks , Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Electrophysiologic Techniques, Cardiac , Ion Channels/metabolism , Myocytes, Cardiac/physiology
5.
Chronobiol Int ; 39(4): 525-534, 2022 04.
Article in English | MEDLINE | ID: mdl-34875962

ABSTRACT

Cardiac electrophysiological studies demonstrate that restricting the feeding of mice to the light cycle (time restricted feeding or TRF) causes a pronounced change in heart rate and ventricular repolarization as measured by the RR- and QT-interval, respectively. TRF slows heart rate and shifts the peak (acrophase) of the day/night rhythms in the RR- and QT-intervals from the light to the dark cycle. This study tested the hypothesis that these changes in cardiac electrophysiology are driven by the cardiomyocyte circadian clock mechanism. We determined the impact that TRF had on RR- and QT-intervals in control mice or mice that had the cardiomyocyte circadian clock mechanism disrupted by inducing the deletion of Bmal1 in adult cardiomyocytes (iCSΔBmal1-/- mice). In control and iCSΔBmal1-/- mice, TRF increased the RR-intervals measured during the dark cycle and shifted the acrophase of the day/night rhythm in the RR-interval from the light to the dark cycle. Compared to control mice, TRF caused a larger prolongation of the QT-interval measured from iCSΔBmal1-/- mice during the dark cycle. The larger QT-interval prolongation in the iCSΔBmal1-/- mice caused an increased mean and amplitude in the day/night rhythm of the QT-interval. There was not a difference in the TRF-induced shift in the day/night rhythm of the QT-interval measured from control or iCSΔBmal1-/- mice. We conclude that the cardiomyocyte circadian clock does not drive the changes in heart rate or ventricular repolarization with TRF. However, TRF unmasks an important role for the cardiomyocyte circadian clock to prevent excessive QT-interval prolongation, especially at slow heart rates.


Subject(s)
Circadian Clocks , Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Eating , Heart Rate/physiology , Mice , Myocytes, Cardiac
SELECTION OF CITATIONS
SEARCH DETAIL
...