Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Proc Natl Acad Sci U S A ; 121(17): e2304199121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38630712

ABSTRACT

Although anti-citrullinated protein autoantibodies (ACPAs) are a hallmark serological feature of rheumatoid arthritis (RA), the mechanisms and cellular sources behind the generation of the RA citrullinome remain incompletely defined. Peptidylarginine deiminase IV (PAD4), one of the key enzymatic drivers of citrullination in the RA joint, is expressed by granulocytes and monocytes; however, the subcellular localization and contribution of monocyte-derived PAD4 to the generation of citrullinated autoantigens remain underexplored. In this study, we demonstrate that PAD4 displays a widespread cellular distribution in monocytes, including expression on the cell surface. Surface PAD4 was enzymatically active and capable of citrullinating extracellular fibrinogen and endogenous surface proteins in a calcium dose-dependent manner. Fibrinogen citrullinated by monocyte-surface PAD4 could be specifically recognized over native fibrinogen by a panel of eight human monoclonal ACPAs. Several unique PAD4 substrates were identified on the monocyte surface via mass spectrometry, with citrullination of the CD11b and CD18 components of the Mac-1 integrin complex being the most abundant. Citrullinated Mac-1 was found to be a target of ACPAs in 25% of RA patients, and Mac-1 ACPAs were significantly associated with HLA-DRB1 shared epitope alleles, higher C-reactive protein and IL-6 levels, and more erosive joint damage. Our findings implicate the monocyte cell surface as a unique and consequential site of extracellular and cell surface autoantigen generation in RA.


Subject(s)
Aminosalicylic Acids , Arthritis, Rheumatoid , Monocytes , Humans , Protein-Arginine Deiminases , Monocytes/metabolism , Autoantigens , Autoantibodies , Fibrinogen/metabolism , Citrulline/metabolism
2.
Front Mol Biosci ; 10: 1173039, 2023.
Article in English | MEDLINE | ID: mdl-37936721

ABSTRACT

Introduction: This study aims to test the hypothesis that increased ketone body production resulting from a ketogenic diet (KD) will correlate with reductions in pro-inflammatory cytokines and lipid subspecies and improved clinical outcomes in adults treated with an adjunctive ketogenic diet for super-refractory status epilepticus (SRSE). Methods: Adults (18 years or older) were treated with a 4:1 (fat: carbohydrate and protein) ratio of enteral KD as adjunctive therapy to pharmacologic seizure suppression in SRSE. Blood and urine samples and clinical measurements were collected at baseline (n = 10), after 1 week (n = 8), and after 2 weeks of KD (n = 5). In addition, urine acetoacetate, serum ß-hydroxybutyrate, lipidomics, pro-inflammatory cytokines (IL-1ß and IL-6), chemokines (CCL3, CCL4, and CXCL13), and clinical measurements were obtained at these three time points. Univariate and multivariate data analyses were performed to determine the correlation between ketone body production and circulating lipids, inflammatory biomarkers, and clinical outcomes. Results: Changes in lipids included an increase in ceramides, mono-hexosylceramide, sphingomyelin, phosphocholine, and phosphoserines, and there was a significant reduction in pro-inflammatory mediators, IL-6 and CXCL13, seen at 1 and 2 weeks of KD. Higher blood ß-hydroxybutyrate levels at baseline correlated with better clinical outcomes; however, ketone body production did not correlate with other variables during treatment. Higher chemokine CCL3 levels following treatment correlated with a longer stay in the intensive care unit and a higher modified Rankin Scale score (worse neurologic disability) at discharge and 6-month follow up. Discussion: Adults receiving an adjunctive enteral ketogenic diet for super-refractory status epilepticus exhibit alterations in select pro-inflammatory cytokines and lipid species that may predict their response to treatment.

3.
Exp Neurol ; 367: 114469, 2023 09.
Article in English | MEDLINE | ID: mdl-37327963

ABSTRACT

Prenatal Zika virus (ZIKV) infection is a serious global concern as it can lead to brain injury and many serious birth defects, collectively known as congenital Zika syndrome. Brain injury likely results from viral mediated toxicity in neural progenitor cells. Additionally, postnatal ZIKV infections have been linked to neurological complications, yet the mechanisms driving these manifestations are not well understood. Existing data suggest that the ZIKV envelope protein can persist in the central nervous system for extended periods of time, but it is unknown if this protein can independently contribute to neuronal toxicity. Here we find that the ZIKV envelope protein is neurotoxic, leading to overexpression of poly adenosine diphosphate -ribose polymerase 1, which can induce parthanatos. Together, these data suggest that neuronal toxicity resulting from the envelope protein may contribute to the pathogenesis of post-natal ZIKV-related neurologic complications.


Subject(s)
Brain Injuries , Nervous System Diseases , Neurotoxicity Syndromes , Zika Virus Infection , Zika Virus , Pregnancy , Female , Humans , Zika Virus/metabolism , Zika Virus Infection/complications , Zika Virus Infection/pathology , Viral Envelope Proteins/metabolism , Neurons/pathology
4.
Curr Opin Neurol ; 36(3): 198-206, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37078647

ABSTRACT

PURPOSE OF THE REVIEW: Persistent infections capable of causing central nervous system (CNS) complications months or years after the initial infection represent a major public health concern. This concern is particularly relevant considering the ongoing coronavirus disease 2019 pandemic, where the long-term neurological effects are still being recognized. RECENT FINDINGS: Viral infections are a risk factor for the development of neurodegenerative diseases. In this paper, we provide an in-depth exploration of the prevalent known and suspected persistent pathogens and their epidemiological and mechanistic links to later development of CNS disease. We examine the pathogenic mechanisms involved, including direct viral damage and indirect immune dysregulation, while also addressing the challenges associated with detecting persistent pathogens. SUMMARY: Viral encephalitis has been closely associated with the later development of neurodegenerative diseases and persistent viral infections of the CNS can result in severe and debilitating symptoms. Further, persistent infections may result in the development of autoreactive lymphocytes and autoimmune mediated tissue damage. Diagnosis of persistent viral infections of the CNS remains challenging and treatment options are limited. The development of additional testing modalities as well as novel antiviral agents and vaccines against these persistent infections remains a crucial research goal.


Subject(s)
COVID-19 , Central Nervous System Diseases , Virus Diseases , Humans , Persistent Infection , COVID-19/complications , Virus Diseases/complications
5.
Clin Pediatr (Phila) ; 62(8): 824-829, 2023 09.
Article in English | MEDLINE | ID: mdl-36660959

ABSTRACT

Spice consumption, along with other environmental factors, can contribute to pediatric lead poisoning. Although public health efforts have increased awareness of contamination of spices, false assumptions regarding the safety of home-prepared spices have emerged. Here, we present the clinical features, family beliefs, and environmental toxicology of 3 spice-associated pediatric lead poisoning cases.


Subject(s)
Lead Poisoning , Spices , Humans , Child , Lead Poisoning/etiology
6.
Brain ; 146(3): 968-976, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36181424

ABSTRACT

The aetiology of nodding syndrome remains unclear, and comprehensive genotyping and phenotyping data from patients remain sparse. Our objectives were to characterize the phenotype of patients with nodding syndrome, investigate potential contributors to disease aetiology, and evaluate response to immunotherapy. This cohort study investigated members of a single-family unit from Lamwo District, Uganda. The participants for this study were selected by the Ugandan Ministry of Health as representative for nodding syndrome and with a conducive family structure for genomic analyses. Of the eight family members who participated in the study at the National Institutes of Health (NIH) Clinical Center, three had nodding syndrome. The three affected patients were extensively evaluated with metagenomic sequencing for infectious pathogens, exome sequencing, spinal fluid immune analyses, neurometabolic and toxicology testing, continuous electroencephalography and neuroimaging. Five unaffected family members underwent a subset of testing for comparison. A distinctive interictal pattern of sleep-activated bursts of generalized and multifocal epileptiform discharges and slowing was observed in two patients. Brain imaging showed two patients had mild generalized cerebral atrophy, and both patients and unaffected family members had excessive metal deposition in the basal ganglia. Trace metal biochemical evaluation was normal. CSF was non-inflammatory and one patient had CSF-restricted oligoclonal bands. Onchocerca volvulus-specific antibodies were present in all patients and skin snips were negative for active onchocerciasis. Metagenomic sequencing of serum and CSF revealed hepatitis B virus in the serum of one patient. Vitamin B6 metabolites were borderline low in all family members and CSF pyridoxine metabolites were normal. Mitochondrial DNA testing was normal. Exome sequencing did not identify potentially causal candidate gene variants. Nodding syndrome is characterized by a distinctive pattern of sleep-activated epileptiform activity. The associated growth stunting may be due to hypothalamic dysfunction. Extensive testing years after disease onset did not clarify a causal aetiology. A trial of immunomodulation (plasmapheresis in two patients and intravenous immunoglobulin in one patient) was given without short-term effect, but longer-term follow-up was not possible to fully assess any benefit of this intervention.


Subject(s)
Nodding Syndrome , Onchocerciasis , United States , Humans , Cohort Studies , Immunomodulation , Genomics
7.
Neurotherapeutics ; 19(4): 1313-1328, 2022 07.
Article in English | MEDLINE | ID: mdl-35831747

ABSTRACT

There is a continuing unmet medical need to develop neuroprotective strategies to treat neurodegenerative disorders. To address this need, we screened over 2000 compounds for potential neuroprotective activity in a model of oxidative stress and found that numerous antifungal agents were neuroprotective. Of the identified compounds, fluconazole was further characterized. Fluconazole was able to prevent neurite retraction and cell death in in vitro and in vivo models of toxicity. Fluconazole protected neurons in a concentration-dependent manner and exhibited efficacy against several toxic agents, including 3-nitropropionic acid, N-methyl D-aspartate, 6-hydroxydopamine, and the HIV proteins Tat and gp120. In vivo studies indicated that systemically administered fluconazole was neuroprotective in animals treated with 3-nitropropionic acid and prevented gp120-mediated neuronal loss. In addition to neuroprotection, fluconazole also induced proliferation of neural progenitor cells in vitro and in vivo. Fluconazole mediates these effects through upregulation and signaling via the insulin growth factor-1 receptor which results in decreased cAMP production and increased phosphorylation of Akt. Blockade of the insulin growth factor-1 receptor signaling with the selective inhibitor AG1024 abrogated the effects of fluconazole. Our studies suggest that fluconazole may be an attractive candidate for treatment of neurodegenerative diseases due to its protective properties against several categories of neuronal insults and its ability to spur neural progenitor cell proliferation.


Subject(s)
Insulins , Neurodegenerative Diseases , Neuroprotective Agents , Animals , Receptor, IGF Type 1/metabolism , Neuroprotection , Fluconazole/pharmacology , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-akt , Oxidopamine , Antifungal Agents , D-Aspartic Acid
8.
Curr Opin Infect Dis ; 35(3): 223-230, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35665716

ABSTRACT

PURPOSE OF REVIEW: HIV-associated neurocognitive disorders (HAND) continues to be prevalent in people living with HIV despite antiretroviral therapy. However, understanding disease mechanisms and identifying therapeutic avenues has been challenging. One of the challenges is that HAND is a heterogeneous disease and that patients identified with similar impairments phenotypically may have very different underlying disease processes. As the NeuroAIDS field is re-evaluating the approaches used to identify patients with HIV-associated neurological impairments, we propose the subtyping of patients into biotypes based on viral and immune pathogenesis. RECENT FINDINGS: Here we review the evidence supporting subtyping patients with HIV-associated neurological complications into four biotypes: macrophage-mediated HIV encephalitis, CNS viral escape, T-cell-mediated HIV encephalitis, and HIV protein-associated encephalopathy. SUMMARY: Subtyping patients into subgroups based on biotypes has emerged as a useful approach for studying heterogeneous diseases. Understanding biotypes of HIV-associated neurocognitive impairments may therefore enable better understanding of disease mechanisms, allow for the development of prognostic and diagnostic markers, and could ultimately guide therapeutic decisions.


Subject(s)
AIDS Dementia Complex , Central Nervous System Viral Diseases , Encephalitis , HIV Infections , Nervous System Diseases , AIDS Dementia Complex/diagnosis , AIDS Dementia Complex/drug therapy , AIDS Dementia Complex/epidemiology , HIV Infections/diagnosis , Humans
9.
Curr Opin Neurol ; 35(3): 384-391, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35674083

ABSTRACT

PURPOSE OF REVIEW: The coronavirus disease 2019 (COVID) pandemic has resulted in significant mortality and morbidity globally. Patients who survive infection may develop continuing disease collectively known as the postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection (PASC), which includes neurologic symptoms especially fatigue and cognitive impairment. The pathogenic mechanisms driving PASC are unknown although a postinfectious process, persistent infection, or lasting pathophysiological changes that occur during acute infection are all suspected to contribute. RECENT FINDINGS: Here we review the current evidence underlying potential pathogenic mechanisms of the neurological complications of PASC with particular emphasis on the evidence for postinfectious immune processes and viral persistence. SUMMARY: Immune dysregulation favoring persistent inflammation, including neuroinflammation and enhanced autoimmunity, are present in patients with COVID and likely contribute to the development of PASC. Limited evidence of viral persistence exists but may explain the ongoing inflammatory processes and affinity maturation observed in some patients recovering from COVID infections. No specific studies to date have tied persistent infection to PASC. CNS trauma, in particular hypoxic changes in the CNS, and psychiatric complications occur with greater frequency in patients with COVID and may contribute to the development of PASC. Future research is needed to fully understand the pathophysiological mechanisms driving PASC.


Subject(s)
COVID-19 , Cognitive Dysfunction , Nervous System Diseases , COVID-19/complications , Disease Progression , Fatigue , Humans , Nervous System Diseases/etiology
10.
Front Neurol ; 13: 874211, 2022.
Article in English | MEDLINE | ID: mdl-35734473

ABSTRACT

Background: Peptidylarginine deiminase 2 (PAD2) mediates the post-translational conversion of arginine residues in proteins to citrullines and is highly expressed in the central nervous system (CNS). Dysregulated PAD2 activity has been implicated in the pathogenesis of several neurologic diseases, including multiple sclerosis (MS). In this study, we sought to define the cellular and regional expression of the gene encoding for PAD2 (i.e. PADI2) in the human CNS using publicly available datasets and evaluate whether anti-PAD2 antibodies were present in patients with various neurologic diseases. Methods: A total of 491 study participants were included in this study: 91 people with MS, 32 people with neuromyelitis optica (NMO), 281 people with post-treatment Lyme disease (PTLD), and 87 healthy controls. To measure PADI2 expression in the CNS from healthy individuals, publicly available tissue and single cell RNA sequencing data was analyzed. Anti-PAD2 antibodies were measured in the serum of study participants using anti-PAD2 ELISA. Clinical and demographic variables were compared according to anti-PAD2 antibody positivity for the MS and PTLD groups and correlations between anti-PAD2 levels and disease severity were examined. Results: PADI2 expression was highest in oligodendrocytes (mean ± SD; 6.4 ± 2.2), followed closely by astrocytes (5.5 ± 2.6), microglia/macrophages (4.5 ± 3.5), and oligodendrocyte precursor cells (3.2 ± 3.3). There was an increased proportion of anti-PAD2 positivity in the MS (19.8%; p = 0.007) and PTLD groups (13.9%; p = 0.057) relative to the healthy controls (5.7%), and these antibodies were not detected in NMO patients. There was a modest inverse correlation between anti-PAD2 levels and disease severity in people with MS (τ = -0.145, p = 0.02), with levels being the highest in those with relapsing-remitting disease. Similarly, there was a modest inverse correlation between anti-PAD2 levels and neurocognitive score (τ = -0.10, p = 0.027) in people with PTLD, with difficulty focusing, memory changes, fatigue, and difficulty finding words contributing most strongly to the effect. Conclusion: PADI2 expression was observed in diverse regions and cells of the CNS, and anti-PAD2 autoantibodies were associated with less severe symptoms in subsets of patients with MS and PTLD. These data suggest that anti-PAD2 antibodies may attenuate inflammation in diseases of different etiologies, which are united by high PADI2 expression in the target tissue.

11.
J Neuroimmunol ; 369: 577915, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35717735

ABSTRACT

Stiff person syndrome spectrum disorders (SPSD) are a group of rare neuroimmunological disorders that often include painful spasms and rigidity. However, patients have highly heterogeneous signs and symptoms which may reflect different mechanistic disease processes. Understanding subsets of patients based on clinical phenotype may be important for prognosis and guiding treatment. The goal of this review is to provide updates on SPSD and its expanding clinical spectrum, prognostic markers, and treatment considerations. Further, we describe the current understanding in immunopathogenesis and highlight gaps in our knowledge appropriate for future research directions. Examples of revised diagnostic criteria for SPSD based on phenotype are also presented.


Subject(s)
Stiff-Person Syndrome , Autoantibodies , Glutamate Decarboxylase , Humans , Phenotype , Prognosis , Stiff-Person Syndrome/diagnosis , Stiff-Person Syndrome/therapy
12.
FEBS J ; 289(8): 2145-2161, 2022 04.
Article in English | MEDLINE | ID: mdl-33844441

ABSTRACT

There is growing recognition of the diversity of viruses that can infect the cells of the central nervous system (CNS). While the majority of CNS infections are successfully cleared by the immune response, some viral infections persist in the CNS. As opposed to resolved infections, persistent viruses can contribute to ongoing tissue damage and neuroinflammatory processes. In this manuscript, we provide an overview of the current understanding of factors that lead to viral persistence in the CNS including how viruses enter the brain, how these pathogens evade antiviral immune system responses, and how viruses survive and transmit within the CNS. Further, as the CNS may serve as a unique viral reservoir, we examine the ways in which persistent viruses in the CNS are being targeted therapeutically.


Subject(s)
Brain , Central Nervous System
13.
Pathogens ; 9(12)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321732

ABSTRACT

Nodding syndrome is a pediatric epilepsy disorder associated with Onchocerca volvulus infection, but the mechanism driving this relationship is unclear. One hypothesis proposes that parasite-induced immune responses cross-react with human leiomodin-1 resulting in immune-mediated central nervous system (CNS) damage. However, as leiomodin-1 expression and epitope availability in human neurons remains uncharacterized, the relevance of leiomodin-1 autoimmunity is unknown. Leiomodin-1 transcript expression was assessed in silico using publicly available ribonucleic acid (RNA) sequencing databases and in tissue by in situ hybridization and quantitative polymerase chain reaction. Abundance and subcellular localization were examined by cell fractionation and immunoblotting. Leiomodin-1 transcripts were expressed in cells of the CNS, including neurons and astrocytes. Protein was detectable from all brain regions examined as well as from representative cell lines and in vitro differentiated neurons and astrocytes. Leiomodin-1 was expressed on the membrane of newly formed neurons, but not neural progenitor cells or mature neurons. Importantly, leiomodin-1 antibodies were only toxic to cells expressing leiomodin-1 on the membrane. Our findings provide evidence that leiomodin-1 is expressed in human neurons and glia. Furthermore, we show membrane expression mediates leiomodin-1 antibody toxicity, suggesting these antibodies may play a role in pathogenesis.

14.
Curr Opin Neurol ; 33(3): 397-404, 2020 06.
Article in English | MEDLINE | ID: mdl-32209807

ABSTRACT

PURPOSE OF REVIEW: Chronic inflammation is a major component of HIV infection, the effects of which can be devastating in the central nervous system (CNS). Protecting the brain is, therefore, critical as efforts proceed to cure HIV infection by reactivating latent viral reservoirs and driving immune responses. We review the clinical presentation and pathology findings of inflammatory processes in the CNS in patients managed with ART and the drivers of these processes. RECENT FINDINGS: Chronic inflammation is associated with increased mortality and morbidity and HIV infection increases the risk for chronic diseases, especially cognitive impairment. Latent viral reservoirs, including microglia and tissue macrophages, contribute to inflammation in the CNS. Inflammation is generated and maintained through residual viral replication, dysregulation of infected cells, continuously produced viral proteins and positive feedback loops of chronic inflammation. Novel therapeutics and lifestyle changes may help to protect the CNS from immune-mediated damage. SUMMARY: As therapies are developed to cure HIV, it is important to protect the CNS from additional immune-mediated damage. Adjunctive therapies to restore glial function, reduce neuroinflammation and systemic inflammation, and inhibit expression of viral proteins are needed.


Subject(s)
Brain Diseases/immunology , HIV Infections/complications , Inflammation/complications , Brain/immunology , Brain Diseases/virology , HIV Infections/drug therapy , HIV Infections/immunology , Humans , Inflammation/immunology , Microglia/immunology
15.
Annu Rev Pathol ; 15: 395-417, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31977293

ABSTRACT

Nodding syndrome is a rare, enigmatic form of pediatric epilepsy that has occurred in an epidemic fashion beginning in the early 2000s in geographically distinct regions of Africa. Despite extensive investigation, the etiology of nodding syndrome remains unclear, although much progress has been made in understanding the pathogenesis of the disease, as well as in treatment and prevention. Nodding syndrome is recognized as a defined disease entity, but it is likely one manifestation along a continuum of Onchocerca volvulus-associated neurological complications. This review examines the epidemiology of nodding syndrome and its association with environmental factors. It provides a critical analysis of the data that support or contradict the leading hypotheses of the etiologies underlying the pathogenesis of the syndrome. It also highlights the important progress made in treating and preventing this devastating neurological disease and prioritizes important areas for future research.


Subject(s)
Nodding Syndrome/epidemiology , Nodding Syndrome/etiology , Nodding Syndrome/therapy , Africa/epidemiology , Animals , Child , Epilepsy/diagnosis , Epilepsy/epidemiology , Epilepsy/etiology , Humans , Nodding Syndrome/diagnosis , Onchocerca volvulus/pathogenicity , Onchocerciasis/complications , Onchocerciasis/diagnosis , Onchocerciasis/epidemiology , Onchocerciasis/physiopathology
16.
AIDS ; 33 Suppl 2: S145-S157, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31789815

ABSTRACT

OBJECTIVE: The aim of this study was to measure the protein concentration and biological activity of HIV-1 Tat in cerebrospinal fluid (CSF) of individuals on suppressive antiretroviral therapy (ART). DESIGN: CSF was collected from 68 HIV-positive individuals on ART with plasma viral load less than 40 copies/ml, and from 25 HIV-negative healthy controls. Duration of HIV infection ranged from 4 to more than 30 years. METHODS: Tat levels in CSF were evaluated by an ELISA. Tat protein and viral RNA were quantified from exosomes isolated from CSF, followed by western blot or quantitative reverse transcription PCR, respectively. Functional activity of Tat was assessed using an LTR transactivation assay. RESULTS: Tat protein was detected in 36.8% of CSF samples from HIV-positive patients. CSF Tat concentration increased in four out of five individuals after initiation of therapy, indicating that Tat was not inhibited by ART. Similarly, exosomes from 34.4% of CSF samples were strongly positive for Tat protein and/or TAR RNA. Exosomal Tat retained transactivation activity in a CEM-LTR reporter assay in 66.7% of samples assayed, which indicates that over half of the Tat present in CSF is functional. Presence of Tat in CSF was highly associated with previous abuse of psychostimulants (cocaine or amphetamines; P = 0.01) and worse performance in the psychomotor speed (P = 0.04) and information processing (P = 0.02) cognitive domains. CONCLUSION: Tat and TAR are produced in the central nervous system despite adequate ART and are packaged into CSF exosomes. Tat remains biologically active within this compartment. These studies suggest that Tat may be a quantifiable marker of the viral reservoir and highlight a need for new therapies that directly inhibit Tat.


Subject(s)
HIV Infections/drug therapy , RNA, Viral/cerebrospinal fluid , Response Elements , Transcription, Genetic , Transcriptional Activation , tat Gene Products, Human Immunodeficiency Virus/cerebrospinal fluid , Female , HIV Infections/virology , HIV Long Terminal Repeat , HIV-1/genetics , Humans , Male , Middle Aged , Viral Load
17.
Ann Neurol ; 86(5): 695-703, 2019 11.
Article in English | MEDLINE | ID: mdl-31461177

ABSTRACT

OBJECTIVE: To determine the underlying etiology in a patient with progressive dementia with extrapyramidal signs and chronic inflammation referred to the National Institutes of Health Undiagnosed Diseases Program. METHODS: Extensive investigations included metabolic profile, autoantibody panel, infectious etiologies, genetic screening, whole exome sequencing, and the phage-display assay, VirScan, for viral immune responses. An etiological diagnosis was established postmortem. RESULTS: Using VirScan, enrichment of dengue viral antibodies was detected in cerebrospinal fluid as compared to serum. No virus was detected in serum or cerebrospinal fluid, but postmortem analysis confirmed dengue virus in the brain by immunohistochemistry, in situ hybridization, quantitative polymerase chain reaction, and sequencing. Dengue virus was also detectable by polymerase chain reaction and sequencing from brain biopsy tissue collected 33 months antemortem, confirming a chronic infection despite a robust immune response directed against the virus. Immunoprofiling and whole exome sequencing of the patient did not reveal any immunodeficiency, and sequencing of the virus demonstrated wild-type dengue virus in the central nervous system. INTERPRETATION: Dengue virus is the most common arbovirus worldwide and represents a significant public health concern. Infections with dengue virus are usually self-limiting, and chronic dengue infections have not been previously reported. Our findings suggest that dengue virus infections may persist in the central nervous system causing a panencephalitis and should be considered in patients with progressive dementia with extrapyramidal features in endemic regions or with relevant travel history. Furthermore, this work highlights the utility of comprehensive antibody profiling assays to aid in the diagnosis of encephalitis of unknown etiology. ANN NEUROL 2019;86:695-703.


Subject(s)
Dengue/complications , Dengue/pathology , Encephalitis, Viral/etiology , Encephalitis, Viral/pathology , Chronic Disease , Dementia , Dengue Virus , Fatal Outcome , Humans , Male , Middle Aged
18.
Hum Immunol ; 80(8): 561-567, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31010696

ABSTRACT

Antibodies against two G-protein coupled receptors (GPCRs), angiotensin II type 1 receptor (AT1R) and endothelin A receptor (ETAR) are among a growing number of autoantibodies that are found to be associated with allograft dysfunction. AT1R antibodies (AT1Rabs) and ETAR antibodies (ETARabs) have been shown to activate their target receptors and affect signaling pathways. Multiple single center reports have shown an association between presence of these antibodies and acute or chronic rejection and graft loss in kidney, heart, liver, lung and composite tissue transplantations. However, the characteristics of patients that are most likely to develop adverse outcomes, the phenotypes associated with graft damage solely due to these antibodies, and the antibody titer required to cause dysfunction are areas that remain controversial. This review compiles existing knowledge on the effect of antibodies against GPCRs in other diseases in order to bridge the gap in knowledge within transplantation biology. Future areas for research are highlighted and include the need for functional assays and treatment protocols for transplant patients who present with AT1Rabs and ETARabs. Understanding how antibodies that activate GPCRs influence transplantation outcome will have direct clinical implications for preemptive evaluation of transplant candidates as well as the post-transplant care of organ recipients.


Subject(s)
Autoantibodies/metabolism , Graft Rejection/immunology , Organ Transplantation , Receptor, Angiotensin, Type 1/immunology , Receptor, Endothelin A/immunology , Animals , Humans , Phenotype , Signal Transduction , Transplantation Immunology
19.
AIDS ; 33(3): 433-441, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30475266

ABSTRACT

OBJECTIVE: We investigated whether HIV brain latency was associated with brain injury in virally suppressed HIV infection. DESIGN: Observational cross-sectional and longitudinal study. METHODS: The study included 26 virally suppressed HIV-infected men (61.5% with HIV-associated neurocognitive disorder) who undertook cerebrospinal fluid (CSF) analyses at baseline. They also completed a proton magnetic resonance spectroscopy (1H MRS) and neuropsychological assessments at baseline and 18 months. To quantify whether there was residual brain HIV transcription, we measured CSF HIV-tat. As an HIV brain latency biomarker, we used concentrations of CSF BcL11b - a microglia transcription factor that inhibits HIV transcription. Concurrently, we assessed neuroinflammation with CSF neopterin, neuronal injury with CSF neurofilament light-chain (NFL), and in-vivo neurochemistry with 1H MRS of N-acetyl aspartate (NAA), choline (Cho), creatine, myo-inositol (MI), glutamine/glutamate (Glx) in the frontal white matter (FWM), posterior cingulate cortex (PCC), and caudate nucleus area. RESULTS: Baseline adjusted regression models for neopterin, NFL, and tat showed that a higher CSF BcL11b was consistently associated with lower FWM creatine (when adjusted for neopterin: ß = -0.30, P = 0.15; when adjusted for NFL: ß = -0.47, P = 0.04; and when adjusted for tat: ß = -0.47, P = 0.02). In longitudinal analyses, we found no time effect, but a consistent BcL11b altering effect on FWM creatine. The effect reached a significant moderate effect size range when corrected for CSF NFL (ß = -0.36, P = 0.02) and CSF tat (ß = -0.34, P = 0.02). CONCLUSIONS: Reduced frontal white matter total creatine may indicate subclinical HIV brain latency-related injury. H MRS may offer a noninvasive option to measure HIV brain latency.


Subject(s)
AIDS Dementia Complex/pathology , Brain/virology , HIV Infections/complications , Repressor Proteins/cerebrospinal fluid , Tumor Suppressor Proteins/cerebrospinal fluid , AIDS Dementia Complex/diagnostic imaging , Aged , Biomarkers/cerebrospinal fluid , Brain/diagnostic imaging , Cross-Sectional Studies , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests
20.
Curr Opin Neurol ; 31(3): 318-324, 2018 06.
Article in English | MEDLINE | ID: mdl-29547402

ABSTRACT

PURPOSE OF REVIEW: The immune system serves a critical role in protecting the host against various pathogens. However, under circumstances, once triggered by the infectious process, it may be detrimental to the host. This may be as a result of nonspecific immune activation or due to a targeted immune response to a specific host antigen. In this opinion piece, we discuss the underlying mechanisms that lead to such an inflammatory or autoimmune syndrome affecting the nervous system. We examine these hypotheses in the context of recent emerging infections to provide mechanistic insight into the clinical manifestations and rationale for immunomodulatory therapy. RECENT FINDINGS: Some pathogens endure longer than previously thought. Persistent infections may continue to drive immune responses resulting in chronic inflammation or development of autoimmune processes, resulting in damage to the nervous system. Patients with genetic susceptibilities in immune regulation may be particularly vulnerable to pathogen driven autoimmune responses. SUMMARY: The presence of prolonged pathogens may result in chronic immune stimulations that drives immune-mediated neurologic complications. Understanding the burden and mechanisms of these processes is challenging but important.


Subject(s)
Infections/complications , Inflammation/immunology , Nervous System Diseases/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...