Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 12(8): 2041-2056, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38349277

ABSTRACT

Biomaterial-based agents have been demonstrated to regulate the function of immune cells in models of autoimmunity. However, the complexity of the kinetics of immune cell activation can present a challenge in optimizing the dose and frequency of administration. Here, we report a model of autoreactive T cell activation, which are key drivers in autoimmune inflammatory joint disease. The model is termed a multi-scale Agent-Based, Cell-Driven model of Inflammatory Arthritis (ABCD of IA). Using kinetic rate equations and statistical theory, ABCD of IA simulated the activation and presentation of autoantigens by dendritic cells, interactions with cognate T cells and subsequent T cell proliferation in the lymph node and IA-affected joints. The results, validated with in vivo data from the T cell driven SKG mouse model, showed that T cell proliferation strongly correlated with the T cell receptor (TCR) affinity distribution (TCR-ad), with a clear transition state from homeostasis to an inflammatory state. T cell proliferation was strongly dependent on the amount of antigen in antigenic stimulus event (ASE) at low concentrations. On the other hand, inflammation driven by Th17-inducing cytokine mediated T cell phenotype commitment was influenced by the initial level of Th17-inducing cytokines independent of the amount of arthritogenic antigen. The introduction of inhibitory artificial antigen presenting cells (iaAPCs), which locally suppress T cell activation, reduced T cell proliferation in a dose-dependent manner. The findings in this work set up a framework based on theory and modeling to simulate personalized therapeutic strategies in IA.


Subject(s)
Arthritis , Mice , Animals , T-Lymphocytes , Autoantigens , Lymphocyte Activation , Cytokines , Receptors, Antigen, T-Cell/genetics
2.
ACS Nano ; 18(3): 1892-1906, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38016062

ABSTRACT

Disease-modifying drugs have improved the treatment for autoimmune joint disorders, such as rheumatoid arthritis, but inflammatory flares are a common experience. This work reports the development and application of flare-modulating poly(lactic-co-glycolic acid)-poly(ethylene glycol)-maleimide (PLGA-PEG-MAL)-based nanoparticles conjugated with joint-relevant peptide antigens, aggrecan70-84 and type 2 bovine collagen256-270. Peptide-conjugated PLGA-PEG-MAL nanoparticles encapsulated calcitriol, which acted as an immunoregulatory agent, and were termed calcitriol-loaded nanoparticles (CLNP). CLNP had a ∼200 nm hydrodynamic diameter with a low polydispersity index. In vitro, CLNP induced phenotypic changes in bone marrow derived dendritic cells (DC), reducing the expression of costimulatory and major histocompatibility complex class II molecules, and proinflammatory cytokines. Bulk RNA sequencing of DC showed that CLNP enhanced expression of Ctla4, a gene associated with downregulation of immune responses. In vivo, CLNP accumulated in the proximal lymph nodes after intramuscular injection. Administration of CLNP was not associated with changes in peripheral blood cell numbers or cytokine levels. In the collagen-induced arthritis and SKG mouse models of autoimmune joint disorders, CLNP reduced clinical scores, prevented bone erosion, and preserved cartilage proteoglycan, as assessed by high-resolution microcomputed tomography and histomorphometry analysis. The disease protective effects were associated with increased CTLA-4 expression in joint-localized DC and CD4+ T cells but without generalized suppression of T cell-dependent immune response. The results support the potential of CLNP as modulators of disease flares in autoimmune arthropathies.


Subject(s)
Autoimmune Diseases , Lactates , Nanoparticles , Polyethylene Glycols , Mice , Animals , Cattle , Calcitriol/metabolism , Symptom Flare Up , X-Ray Microtomography , Cytokines/metabolism , Immunity , Nanoparticles/chemistry , Dendritic Cells
3.
Bioeng Transl Med ; 8(6): e10591, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38023723

ABSTRACT

Sustained release of vaccine components is a potential method to boost efficacy compared with traditional bolus injection. Here, we show that a biodegradable hyaluronic acid (HA)-scaffold, termed HA cryogel, mediates sustained antigen and adjuvant release in vivo leading to a durable immune response. Delivery from subcutaneously injected HA cryogels was assessed and a formulation which enhanced the immune response while minimizing the inflammation associated with the foreign body response was identified, termed CpG-OVA-HAC2. Dose escalation studies with CpG-OVA-HAC2 demonstrated that both the antibody and T cell responses were dose-dependent and influenced by the competency of neutrophils to perform oxidative burst. In immunodeficient post-hematopoietic stem cell transplanted mice, immunization with CpG-OVA-HAC2 elicited a strong antibody response, three orders of magnitude higher than dose-matched bolus injection. In a melanoma model, CpG-OVA-HAC2 induced dose-responsive prophylactic protection, slowing the tumor growth rate and enhancing overall survival. Upon rechallenge, none of the mice developed new tumors suggesting the development of robust immunological memory and long-lasting protection against repeat infections. CpG-OVA-HAC2 also enhanced survival in mice with established tumors. The results from this work support the potential for CpG-OVA-HAC2 to enhance vaccine delivery.

4.
Adv Sci (Weinh) ; 10(11): e2202720, 2023 04.
Article in English | MEDLINE | ID: mdl-36890657

ABSTRACT

Disease modifying antirheumatic drugs (DMARDs) have improved the prognosis of autoimmune inflammatory arthritides but a large fraction of patients display partial or nonresponsiveness to front-line DMARDs. Here, an immunoregulatory approach based on sustained joint-localized release of all-trans retinoic acid (ATRA), which modulates local immune activation and enhances disease-protective T cells and leads to systemic disease control is reported. ATRA imprints a unique chromatin landscape in T cells, which is associated with an enhancement in the differentiation of naïve T cells into anti-inflammatory regulatory T cells (Treg ) and suppression of Treg destabilization. Sustained release poly-(lactic-co-glycolic) acid (PLGA)-based biodegradable microparticles encapsulating ATRA (PLGA-ATRA MP) are retained in arthritic mouse joints after intra-articular (IA) injection. IA PLGA-ATRA MP enhance migratory Treg which in turn reduce inflammation and modify disease in injected and uninjected joints, a phenotype that is also reproduced by IA injection of Treg . PLGA-ATRA MP reduce proteoglycan loss and bone erosions in the SKG and collagen-induced arthritis mouse models of autoimmune arthritis. Strikingly, systemic disease modulation by PLGA-ATRA MP is not associated with generalized immune suppression. PLGA-ATRA MP have the potential to be developed as a disease modifying agent for autoimmune arthritis.


Subject(s)
Antirheumatic Agents , Arthritis , Autoimmune Diseases , Mice , Animals , Autoimmune Diseases/drug therapy , T-Lymphocytes, Regulatory , Inflammation , Tretinoin/pharmacology
5.
Bioeng Transl Med ; 8(1): e10309, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36684088

ABSTRACT

Neutrophils are essential effector cells for mediating rapid host defense and their insufficiency arising from therapy-induced side-effects, termed neutropenia, can lead to immunodeficiency-associated complications. In autologous hematopoietic stem cell transplantation (HSCT), neutropenia is a complication that limits therapeutic efficacy. Here, we report the development and in vivo evaluation of an injectable, biodegradable hyaluronic acid (HA)-based scaffold, termed HA cryogel, with myeloid responsive degradation behavior. In mouse models of immune deficiency, we show that the infiltration of functional myeloid-lineage cells, specifically neutrophils, is essential to mediate HA cryogel degradation. Post-HSCT neutropenia in recipient mice delayed degradation of HA cryogels by up to 3 weeks. We harnessed the neutrophil-responsive degradation to sustain the release of granulocyte colony stimulating factor (G-CSF) from HA cryogels. Sustained release of G-CSF from HA cryogels enhanced post-HSCT neutrophil recovery, comparable to pegylated G-CSF, which, in turn, accelerated cryogel degradation. HA cryogels are a potential approach for enhancing neutrophils and concurrently assessing immune recovery in neutropenic hosts.

6.
Drug Deliv Transl Res ; 13(7): 1912-1924, 2023 07.
Article in English | MEDLINE | ID: mdl-36566262

ABSTRACT

Short-chain fatty acids (SCFAs) are major metabolic products of indigestible polysaccharides in the gut and mediate the function of immune cells to facilitate homeostasis. The immunomodulatory effect of SCFAs has been attributed, at least in part, to the epigenetic modulation of immune cells through the inhibition the nucleus-resident enzyme histone deacetylase (HDAC). Among the downstream effects, SCFAs enhance regulatory T cells (Treg) over inflammatory T helper (Th) cells, including Th17 cells, which can be pathogenic. Here, we characterize the potential of two common SCFAs-butyrate and pentanoate-in modulating differentiation of T cells in vitro. We show that butyrate but not pentanoate exerts a concentration-dependent effect on Treg and Th17 differentiation. Increasing the concentration of butyrate suppresses the Th17-associated RORγtt and IL-17 and increases the expression of Treg-associated FoxP3. To effectively deliver butyrate, encapsulation of butyrate in a liposomal carrier, termed BLIPs, reduced cytotoxicity while maintaining the immunomodulatory effect on T cells. Consistent with these results, butyrate and BLIPs inhibit HDAC and promote a unique chromatin landscape in T cells under conditions that otherwise promote conversion into a pro-inflammatory phenotype. Motif enrichment analysis revealed that butyrate and BLIP-mediated suppression of Th17-associated chromatin accessibility corresponded with a marked decrease in bZIP family transcription factor binding sites. These results support the utility and further evaluation of BLIPs as an immunomodulatory agent for autoimmune disorders that are characterized by chronic inflammation and pathogenic inflammatory T cells.


Subject(s)
Butyrates , Fatty Acids, Volatile , Fatty Acids, Volatile/pharmacology , Fatty Acids, Volatile/metabolism , Butyrates/pharmacology , Butyrates/metabolism , T-Lymphocytes, Regulatory/metabolism , Valerates/metabolism , Valerates/pharmacology , Epigenesis, Genetic , Chromatin/metabolism
7.
Bioeng Transl Med ; 7(2): e10288, 2022 May.
Article in English | MEDLINE | ID: mdl-35600637

ABSTRACT

Lipids constitute a diverse class of molecular regulators with ubiquitous physiological roles in sustaining life. These carbon-rich compounds are primarily sourced from exogenous sources and may be used directly as structural cellular building blocks or as a substrate for generating signaling mediators to regulate cell behavior. In both of these roles, lipids play a key role in both immune activation and suppression, leading to inflammation and resolution, respectively. The simple yet elegant structural properties of lipids encompassing size, hydrophobicity, and molecular weight enable unique biodistribution profiles that facilitate preferential accumulation in target tissues to modulate relevant immune cell subsets. Thus, the structural and functional properties of lipids can be leveraged to generate new materials as pharmacological agents for potently modulating the immune system. Here, we discuss the properties of three classes of lipids: polyunsaturated fatty acids, short-chain fatty acids, and lipid adjuvants. We describe their immunoregulatory functions in modulating disease pathogenesis in preclinical models and in human clinical trials. We conclude with an outlook on harnessing the diverse and potent immune modulating properties of lipids for immunoregulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...