Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Plant Dis ; 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33656361

ABSTRACT

In the past two decades, laurel wilt disease has significantly affected members of the Lauraceae in the southeast United States, causing widespread mortality of native redbay (Persea borbonia (L.) Spreng), and incidence of infections in avocado (Persea americana Mill.), sassafras (Sassafras albidum L.) and swamp bay (Persea palustris [Raf.] Sarg.) (Fraedrich et al., 2008, 2015, Olatinwo, et al. 2019). Laurel wilt is a vascular disease caused by Raffaelea lauricola (T.C. Harr., Fraedrich & Aghayeva), a fungus vectored by a non-native ambrosia beetle Xyleborus glabratus Eichhoff (Fraedrich et al. 2008). In August 2020, we investigated the mortality of a spicebush shrub (Lindera benzoin L.) (3.8 cm diameter at root collar, two m height) located ca. 17 mi northeast of Colfax, Grant Parish, Louisiana (31.750263° N, -92.643694° W). Evaluation of the dead shrub revealed brown, persistent foliage, and black vascular discoloration of the sapwood, typical symptoms of laurel wilt (Fig. S1). Although, beetle holes were observed on the sapwood, no beetle was found in galleries at the time. In the laboratory, a fungus consistently isolated from surface-sterilized sapwood tissues plated on potato dextrose agar (PDA) was identified as R. lauricola based on the morphological characteristics of the isolate (i.e., mucoid growth, conidiophores, and oblong/ovoid shape conidia [Harrington et al. 2008]). The fungal isolate was denoted as SB1. The identity of the fungus was confirmed by positive PCR amplification of the large subunit ribosomal RNA gene region using species-specific primers; rab-lsu-rl_F: CCCTCGCGGCGTATTATAG and rab-lsu-rl_R: GCGGGGCTCCTACTCAAA (Olatinwo, unpublished). The sequence of the isolate SB1 (GenBank Accession no. MW207371) showed 100% homology to the R. lauricola strain CBS 127349 sequence (GenBank Accession no. MH877933). The pathogenicity of SB1 on spicebush was evaluated on four healthy shrubs (average: 1 m height and 40 mm in diameter) at the location from which the original detection was made. Stems of two spicebush shrubs were inoculated with SB1 agar plugs from a 14-day old culture on PDA, while plain PDA plugs were used on the remaining two shrubs as non-inoculated controls. Agar plugs were placed in 5 mm (0.2 in) diameter hole punched on the bark with cork-borer as described by Mayfield et al (2008). After six weeks, the R. lauricola inoculated shrubs were wilted with noticeable blackened tissue discoloration in the sapwood, while the control trees remained healthy (Fig. S2). Raffaelea lauricola was re-isolated from tissue of the two inoculated, symptomatic shrubs, but not from the control trees. The sequence of the re-isolated R. lauricola isolate, denoted as SB3 (GenBank Accession no. MW207372), showed 100% homology to the R. lauricola strain CBS 127349 and isolate SB1. This first documentation of laurel wilt on spicebush in Louisiana is significant because, spicebush berries, leaves, and twigs are food sources for forest animals, birds, and insects including whitetail deer and spicebush swallowtail (Papilio troilus L.). Since its first report on sassafras in 2014 (Fraedrich et al. 2015), laurel wilt has spread across Louisiana on sassafras and swamp bay (Olatinwo et al. 2019) and has been confirmed in14 parishes. This report shows the relentless nature of the disease, as the pathogen moves from one vulnerable host to the next, expanding into new locations and threatening forest ecosystems across the southern United States.

2.
Catheter Cardiovasc Interv ; 88(5): 678-689, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26700212

ABSTRACT

OBJECTIVES: This study's aim was to describe a hospital-wide system to deliver rapid door-to-balloon time across the entire spectrum of emergency percutaneous intervention. BACKGROUND: Many patients needing emergency PCI are excluded from door-to-balloon public reporting metric; these groups do not achieve door-to-balloon times ≤90 min and have increased mortality rates. METHODS: We prospectively implemented a protocol for patients with STEMI or other emergency indication for catheterization mandating (1) emergency department physician or cardiologist activation of the catheterization lab and (2) immediate patient transfer to an immediately available catheterization lab by an in-house nursing transfer team. RESULTS: From September 1, 2005 to December 31, 2008, 526 consecutive patients underwent emergency PCI. Median door-to-balloon time was 68 min with 85.7% ≤90 min overall. Important subgroups included primary emergency department (62.5 min), cardiorespiratory arrest (71 min), cardiogenic shock (68 min), need for temporary pacemaker or balloon pump (67 min), initial ECG without ST-elevation (66.5 min), transfer from another ED (84 min), in-hospital (70 min), and activation indications other than STEMI (68 min). Patients presenting to primary ED and in transfer were compared to historical controls. Treatment ≤90 min increased (28%-85%, P < 0.0001). Mean infarct size decreased, as did hospital length-of-stay and admission total hospital costs. Acute myocardial infarction all-cause 30-day unadjusted mortality and risk-standardized mortality ratios were substantially lower than national averages. CONCLUSION: A hospital-wide systems approach applied across the entire spectrum of emergency PCI leads to rapid door-to-balloon time, reduced infarct size and hospitals costs, and low myocardial infarction 30-day all-cause mortality. © 2015 Wiley Periodicals, Inc.


Subject(s)
Emergency Medical Services/organization & administration , Myocardial Infarction/surgery , Percutaneous Coronary Intervention/methods , Electrocardiography , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prospective Studies , Time Factors
3.
J Econ Entomol ; 107(3): 1295-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25026696

ABSTRACT

Current detection tools for Sirex noctilio F. (Hymenoptera Siricidae) in North America are poor. To determine the importance of intercept trap type for capturing females of S. noctilio and its native congener, Sirex nigricornis F., in eastern North America, we report on seven trap comparison studies from different years and geographic locations. Among studies, total numbers of S. noctilio captured were low (mean of < or = 1 wasp per trap). Total numbers of S. nigricornis caught were generally greater, and ranged from a mean of 1-13 wasps per trap. Nearly all studies found no significant differences among intercept trap types in the number of woodwasps caught. For future studies, we recommend that either panel or 12-unit Lindgren funnel traps be used to catch S. noctilio or S. nigricornis in eastern North America.


Subject(s)
Insect Control/methods , Wasps/physiology , Animals , Female , Ontario , United States
4.
Environ Entomol ; 42(6): 1246-56, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24468555

ABSTRACT

The woodwasp Sirex noctilio F. (Hymenoptera: Siricidae) has become established in North America. A primary tactic for the management of S. noctilio in the southern hemisphere has been the development of a biological control agent, Deladenus siricidicola Bedding. This nematode has a bicyclic life cycle including a mycetophagous free-living and parasitic cycle. During oviposition, female Sirex woodwasps inject a symbiotic fungus. Because D. siricidicola only develops well on Amylostereum areolatum (Chaillet ex Fries) Boidin (Russulales: Amylostereaceae) and North American woodwasps were thought to all have Amylostereum chailletii (Persoon) Boidin as their fungal symbiont, the risk of unintended impacts from D. siricidicola in North America was considered low. Specific polymerase chain reaction primers were designed to amplify the intergenic spacer region of Amylostereum symbionts in a population of the native woodwasp Sirex nigricornis F. located in central Louisiana (i.e., well outside the known distribution of S. noctilio); identity of the symbiont was confirmed by phylogenetic analyses. Overall, 95 out of 100 fungal isolates obtained from the mycangia of S. nigricornis were identified as Amylostereum species. Contrary to expectations, 60% were identified as A. chailletii (N = 60), while 35% were identified as A. areolatum (N = 35). The remaining 5% of these isolates (N = 5) were identified as Bipolaris papendorfii (Aa) Alcorn, Alternaria alternata (Fr.) Keissl, Penicillium marneffei Segretain, Scytalidium cuboideum (Sacc. & Ellis) Sigler & Kang, and Hyphopichia heimii (Pignal) Kurtzman based on sequencing of the internal transcribed spacer (ITS) region. The five non-Amylostereum isolates were likely contaminants during mycangia-spore extraction process. This study confirms the presence of A. areolatum in a population of the native woodwasp S. nigricornis well outside the known distribution of S. noctilio.


Subject(s)
Basidiomycota/physiology , Symbiosis , Wasps/microbiology , Animals , Female , Phylogeny
5.
J Biol Chem ; 285(5): 3417-27, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-19923222

ABSTRACT

Immunotherapy targeting of amyloid beta (Abeta) peptide in transgenic mouse models of Alzheimer disease (AD) has been widely demonstrated to resolve amyloid deposition as well as associated neuronal, glial, and inflammatory pathologies. These successes have provided the basis for ongoing clinical trials of immunotherapy for treatment of AD in humans. Acute as well as chronic Abeta-targeted immunotherapy has also been demonstrated to reverse Abeta-related behavioral deficits assessing memory in AD transgenic mouse models. We observe that three antibodies targeting the same linear epitope of Abeta, Abeta(3-7), differ in their ability to reverse contextual fear deficits in Tg2576 mice in an acute testing paradigm. Reversal of contextual fear deficit by the antibodies does not correlate with in vitro recognition of Abeta in a consistent or correlative manner. To better define differences in antigen recognition at the atomic level, we determined crystal structures of Fab fragments in complex with Abeta. The conformation of the Abeta peptide recognized by all three antibodies was highly related and is also remarkably similar to that observed in independently reported Abeta:antibody crystal structures. Sequence and structural differences between the antibodies, particularly in CDR3 of the heavy chain variable region, are proposed to account for differing in vivo properties of the antibodies under study. These findings provide a structural basis for immunotherapeutic strategies targeting Abeta species postulated to underlie cognitive deficits in AD.


Subject(s)
Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Animals , Behavior, Animal , Cross-Linking Reagents/pharmacology , Crystallography, X-Ray/methods , Disease Models, Animal , Epitopes/chemistry , Heterozygote , Humans , Kinetics , Male , Mice , Molecular Conformation , Recombinant Proteins/chemistry
6.
Zookeys ; (56): 219-26, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-21594182

ABSTRACT

Xyleborinus octiesdentatus (Murayama), an ambrosia beetle native to Asia, is reported for the first time in North America based on specimens from Alabama and Louisiana. This is the twenty-first species of exotic Xyleborina documented in North America. A re-description of the female and a key to the four North American species of Xyleborinus are presented.

7.
BMC Cardiovasc Disord ; 9: 32, 2009 Jul 26.
Article in English | MEDLINE | ID: mdl-19631001

ABSTRACT

BACKGROUND: The impact of reducing door-to-balloon time on hospital revenues, costs, and net income is unknown. METHODS: We prospectively determined the impact on hospital finances of (1) emergency department physician activation of the catheterization lab and (2) immediate transfer of the patient to an immediately available catheterization lab by an in-house transfer team consisting of an emergency department nurse, a critical care unit nurse, and a chest pain unit nurse. We collected financial data for 52 consecutive ST-elevation myocardial infarction patients undergoing emergency percutaneous intervention from October 1, 2004-August 31, 2005 and compared this group to 80 consecutive ST-elevation myocardial infarction patients from September 1, 2005-June 26, 2006 after protocol implementation. RESULTS: Per hospital admission, insurance payments (hospital revenue) decreased ($35,043 +/- $36,670 vs. $25,329 +/- $16,185, P = 0.039) along with total hospital costs ($28,082 +/- $31,453 vs. $18,195 +/- $9,242, P = 0.009). Hospital net income per admission was unchanged ($6962 vs. $7134, P = 0.95) as the drop in hospital revenue equaled the drop in costs. For every $1000 reduction in total hospital costs, insurance payments (hospital revenue) dropped $1077 for private payers and $1199 for Medicare/Medicaid. A decrease in hospital charges ($70,430 +/- $74,033 vs. $53,514 +/- $23,378, P = 0.059), diagnosis related group relative weight (3.7479 +/- 2.6731 vs. 2.9729 +/- 0.8545, P = 0.017) and outlier payments with hospital revenue>$100,000 (7.7% vs. 0%, P = 0.022) all contributed to decreasing ST-elevation myocardial infarction hospitalization revenue. One-year post-discharge financial follow-up revealed similar results: Insurance payments: $49,959 +/- $53,741 vs. $35,937 +/- $23,125, P = 0.044; Total hospital costs: $39,974 +/- $37,434 vs. $26,778 +/- $15,561, P = 0.007; Net Income: $9984 vs. $9159, P = 0.855. CONCLUSION: All of the financial benefits of reducing door-to-balloon time in ST-elevation myocardial infarction go to payers both during initial hospitalization and after one-year follow-up. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT00800163.


Subject(s)
Angioplasty, Balloon, Coronary/economics , Emergency Service, Hospital/economics , Hospital Charges , Hospital Costs , Myocardial Infarction/economics , Myocardial Infarction/therapy , Patient Care Team/economics , Patient Transfer/economics , Quality of Health Care/economics , Cost-Benefit Analysis , Humans , Insurance, Health, Reimbursement , Length of Stay/economics , Medicaid/economics , Medicare/economics , Patient Admission/economics , Prospective Studies , Time Factors , Treatment Outcome , United States
8.
Neurodegener Dis ; 5(2): 65-71, 2008.
Article in English | MEDLINE | ID: mdl-18182780

ABSTRACT

BACKGROUND: In vivo administration of antibodies against the amyloid-beta (Abeta) peptide has been shown to reduce and reverse the progressive amyloidosis that develops in a variety of mouse models of Alzheimer's disease (AD). This work has been extended to clinical trials where subsequent autopsy cases of AD subjects immunized against Abeta showed similar reductions in parenchymal amyloid plaques, suggesting this approach to reduce neuropathology in man is feasible. OBJECTIVE: Multiple hypotheses have been advanced to explain how anti-Abeta antibodies may lower amyloid burden. In this report, we compare approaches utilizing either plaque-binding or peptide-capturing anti-Abeta antibodies for effectiveness in reducing amyloidosis in a mouse model of AD. METHODS: A plaque-binding monoclonal antibody (3D6) and an Abeta peptide-capturing monoclonal antibody (266) were compared in chronic treatment and prevention paradigms using a transgenic mouse model of AD. The effects of antibody therapy on plaque burden and plasma clearance of Abeta were investigated by quantitative imaging and clearance studies of intravenously injected (125)I-Abeta. RESULTS: The plaque-binding antibody 3D6 was highly effective in either treatment or prevention of amyloidosis. In these studies, the peptide-capture antibody 266 showed no reduction in amyloidosis in either paradigm and showed trends towards increasing amyloidosis. Antibody 266 was also found to greatly prolong (>180-fold) the normally rapid peripheral clearance of Abeta, in contrast to that found with 3D6 (>24-fold). CONCLUSION: Reversing and preventing Alzheimer's type amyloidosis is most effectively accomplished with anti-amyloid antibodies that avidly bind plaque.


Subject(s)
Amyloid beta-Peptides/immunology , Amyloidosis/immunology , Antibodies/therapeutic use , Cerebral Cortex/immunology , Plaque, Amyloid/immunology , Amyloid beta-Peptides/blood , Amyloidosis/blood , Amyloidosis/therapy , Animals , Antibodies/metabolism , Cerebral Cortex/pathology , Female , Mice , Mice, Transgenic , Plaque, Amyloid/pathology , Protein Binding/immunology , Solubility
9.
J Biol Chem ; 282(36): 26326-34, 2007 Sep 07.
Article in English | MEDLINE | ID: mdl-17616527

ABSTRACT

The aspartyl protease beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) initiates processing of amyloid precursor protein (APP) into amyloid beta (Abeta) peptide, the major component of Alzheimer disease (AD) plaques. To determine the role that BACE1 plays in the development of Abeta-driven AD-like pathology, we have crossed PDAPP mice, a transgenic mouse model of AD overexpressing human mutated APP, onto mice with either a homozygous or heterozygous BACE1 gene knockout. Analysis of PDAPP/BACE(-/-) mice demonstrated that BACE1 is absolutely required for both Abeta generation and the development of age-associated plaque pathology. Furthermore, synaptic deficits, a neurodegenerative pathology characteristic of AD, were also reversed in the bigenic mice. To determine the extent of BACE1 reduction required to significantly inhibit pathology, PDAPP mice having a heterozygous BACE1 gene knock-out were evaluated for Abeta generation and for the development of pathology. Although the 50% reduction in BACE1 enzyme levels caused only a 12% decrease in Abeta levels in young mice, it nonetheless resulted in a dramatic reduction in Abeta plaques, neuritic burden, and synaptic deficits in older mice. Quantitative analyses indicate that brain Abeta levels in young APP transgenic mice are not the sole determinant for the changes in plaque pathology mediated by reduced BACE1. These observations demonstrate that partial reductions of BACE1 enzyme activity and concomitant Abeta levels lead to dramatic inhibition of Abeta-driven AD-like pathology, making BACE1 an excellent target for therapeutic intervention in AD.


Subject(s)
Alzheimer Disease/enzymology , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Aspartic Acid Endopeptidases/metabolism , Synaptic Membranes/enzymology , Synaptic Membranes/pathology , Aging/genetics , Aging/metabolism , Aging/pathology , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Amyloid Precursor Protein Secretases/deficiency , Amyloid beta-Protein Precursor/genetics , Animals , Aspartic Acid Endopeptidases/deficiency , Disease Models, Animal , Enzyme Activation/genetics , Humans , Mice , Mice, Knockout , Neurites/enzymology , Neurites/pathology
10.
J Neurosci ; 25(40): 9096-101, 2005 Oct 05.
Article in English | MEDLINE | ID: mdl-16207868

ABSTRACT

Alzheimer's disease neuropathology is characterized by key features that include the deposition of the amyloid beta peptide (Abeta) into plaques, the formation of neurofibrillary tangles, and the loss of neurons and synapses in specific brain regions. The loss of synapses, and particularly the associated presynaptic vesicle protein synaptophysin in the hippocampus and association cortices, has been widely reported to be one of the most robust correlates of Alzheimer's disease-associated cognitive decline. The beta-amyloid hypothesis supports the idea that Abeta is the cause of these pathologies. However, the hypothesis is still controversial, in part because the direct role of Abeta in synaptic degeneration awaits confirmation. In this study, we show that Abeta reduction by active or passive Abeta immunization protects against the progressive loss of synaptophysin in the hippocampal molecular layer and frontal neocortex of a transgenic mouse model of Alzheimer's disease. These results, substantiated by quantitative electron microscopic analysis of synaptic densities, strongly support a direct causative role of Abeta in the synaptic degeneration seen in Alzheimer's disease and strengthen the potential of Abeta immunotherapy as a treatment approach for this disease.


Subject(s)
Alzheimer Disease/therapy , Amyloid beta-Peptides/administration & dosage , Immunotherapy , Nerve Degeneration/therapy , Synapses/drug effects , Age Factors , Amyloid beta-Peptides/immunology , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay/methods , Hippocampus/drug effects , Hippocampus/metabolism , Immunohistochemistry/methods , Mice , Mice, Transgenic , Nerve Degeneration/immunology , Nerve Degeneration/metabolism , Peptides/administration & dosage , Peptides/genetics , Peptides/immunology , Synaptophysin/metabolism
11.
Ann Neurol ; 58(3): 430-5, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16130106

ABSTRACT

Serum samples from Alzheimer's disease (AD) patients immunized with Abeta42 (AN1792) were analyzed to determine the induced antibody properties including precise amyloid-beta peptide (Abeta) epitopes and amyloid plaque-binding characteristics. The predominant response in these patients is independent of whether or not meningoencephalitis developed and is against the free amino terminus of Abeta. The immunostaining of amyloid plaques in brain tissue by patient sera is adsorbable by a linear Abeta1-8 peptide, demonstrating that the antibodies are directed predominantly to this epitope and not dependent on Abeta conformations or aggregates specific to plaques. Furthermore, the antibodies are not capable of binding amyloid precursor protein and would be predicted to be competent in facilitating clearance of amyloid plaques in AD brains.


Subject(s)
Alzheimer Disease/prevention & control , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Peptides/immunology , Epitopes/immunology , Immunization/methods , Peptide Fragments/immunology , Alzheimer Disease/immunology , Amyloid beta-Peptides/metabolism , Antibody Specificity , Blotting, Western/methods , Dose-Response Relationship, Immunologic , Epitope Mapping , Humans , Immunization/adverse effects , Immunohistochemistry/methods , Meningoencephalitis/blood , Meningoencephalitis/etiology , Meningoencephalitis/immunology , Peptide Fragments/metabolism
12.
Proc Natl Acad Sci U S A ; 100(4): 2023-8, 2003 Feb 18.
Article in English | MEDLINE | ID: mdl-12566568

ABSTRACT

Transgenic PDAPP mice, which express a disease-linked isoform of the human amyloid precursor protein, exhibit CNS pathology that is similar to Alzheimer's disease. In an age-dependent fashion, the mice develop plaques containing beta-amyloid peptide (Abeta) and exhibit neuronal dystrophy and synaptic loss. It has been shown in previous studies that pathology can be prevented and even reversed by immunization of the mice with the Abeta peptide. Similar protection could be achieved by passive administration of some but not all monoclonal antibodies against Abeta. In the current studies we sought to define the optimal antibody response for reducing neuropathology. Immune sera with reactivity against different Abeta epitopes and monoclonal antibodies with different isotypes were examined for efficacy both ex vivo and in vivo. The studies showed that: (i) of the purified or elicited antibodies tested, only antibodies against the N-terminal regions of Abeta were able to invoke plaque clearance; (ii) plaque binding correlated with a clearance response and neuronal protection, whereas the ability of antibodies to capture soluble Abeta was not necessarily correlated with efficacy; (iii) the isotype of the antibody dramatically influenced the degree of plaque clearance and neuronal protection; (iv) high affinity of the antibody for Fc receptors on microglial cells seemed more important than high affinity for Abeta itself; and (v) complement activation was not required for plaque clearance. These results indicate that antibody Fc-mediated plaque clearance is a highly efficient and effective process for protection against neuropathology in an animal model of Alzheimer's disease.


Subject(s)
Alzheimer Disease/prevention & control , Amyloid beta-Peptides/chemistry , Antibodies, Monoclonal/immunology , Antibody Specificity , Epitopes/immunology , Peptide Fragments/immunology , Alzheimer Disease/immunology , Amino Acid Sequence , Epitope Mapping , Humans , Molecular Sequence Data
13.
Vaccine ; 19(30): 4185-93, 2001 Jul 20.
Article in English | MEDLINE | ID: mdl-11457544

ABSTRACT

Poly(lactide-co-glycolide) (PLG) microspheres were tested as a parenteral delivery system for human beta-amyloid (1-42) (Abeta), a potential immunotherapeutic undergoing assessment in Phase 1 studies for Alzheimer's disease (AD). Abeta was successfully encapsulated in PLG microspheres of average sizes of 3 or 15 microm diameter. Swiss Webster (SW) mice were injected by the sub-cutaneous (s.c.) or intra-peritoneal (i.p.) routes with 3-33 microg Abeta. Abeta-PLG microparticles (3 microm) induced dose-dependent antibody responses, which were maximal at 33 microg Abeta, while Abeta in phosphate-buffered saline (PBS) produced weak antibody responses at the same doses by both routes. Significantly increased antibody responses were seen for both small and large particle formulations given by the i.p. route in comparison to the s.c route. It was previously reported that passive immunisation with Abeta-specific antibodies cleared amyloid plaques in a mouse model of AD (Bard F, Cannon C, Barbour R, et al. Peripherally administered antibodies against amyloid beta-peptide enter the nervous system and reduce pathology in a mouse model of Alzheimer disease. Nature Med 2000;6:916-19), an indication that induction of serum antibody is a prerequisite for efficacy.


Subject(s)
Amyloid beta-Peptides/administration & dosage , Antibodies/blood , Polyglactin 910/administration & dosage , Amyloid beta-Peptides/immunology , Animals , Biodegradation, Environmental , Dose-Response Relationship, Immunologic , Immunization , Mice , Microspheres , Particle Size
14.
Hum Mol Genet ; 10(12): 1317-24, 2001 Jun 01.
Article in English | MEDLINE | ID: mdl-11406613

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major components of plaque, beta-amyloid peptides (Abetas), are produced from amyloid precursor protein (APP) by the activity of beta- and gamma-secretases. beta-secretase activity cleaves APP to define the N-terminus of the Abeta1-x peptides and, therefore, has been a long- sought therapeutic target for treatment of AD. The gene encoding a beta-secretase for beta-site APP cleaving enzyme (BACE) was identified recently. However, it was not known whether BACE was the primary beta-secretase in mammalian brain nor whether inhibition of beta-secretase might have effects in mammals that would preclude its utility as a therapeutic target. In the work described herein, we generated two lines of BACE knockout mice and characterized them for pathology, beta-secretase activity and Abeta production. These mice appeared to develop normally and showed no consistent phenotypic differences from their wild-type littermates, including overall normal tissue morphology and brain histochemistry, normal blood and urine chemistries, normal blood-cell composition, and no overt behavioral and neuromuscular effects. Brain and primary cortical cultures from BACE knockout mice showed no detectable beta-secretase activity, and primary cortical cultures from BACE knockout mice produced much less Abeta from APP. The findings that BACE is the primary beta-secretase activity in brain and that loss of beta-secretase activity produces no profound phenotypic defects with a concomitant reduction in beta-amyloid peptide clearly indicate that BACE is an excellent therapeutic target for treatment of AD.


Subject(s)
Alzheimer Disease/enzymology , Amyloid beta-Peptides/biosynthesis , Amyloid beta-Protein Precursor/metabolism , Aspartic Acid Endopeptidases/metabolism , Brain/enzymology , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain/metabolism , Cell Line , Cells, Cultured , Culture Techniques , Endopeptidases , Enzyme Inhibitors/therapeutic use , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout
15.
J Neurochem ; 76(1): 173-81, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11145990

ABSTRACT

Converging lines of evidence implicate the beta-amyloid peptide (Ass) as causative in Alzheimer's disease. We describe a novel class of compounds that reduce A beta production by functionally inhibiting gamma-secretase, the activity responsible for the carboxy-terminal cleavage required for A beta production. These molecules are active in both 293 HEK cells and neuronal cultures, and exert their effect upon A beta production without affecting protein secretion, most notably in the secreted forms of the amyloid precursor protein (APP). Oral administration of one of these compounds, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, to mice transgenic for human APP(V717F) reduces brain levels of Ass in a dose-dependent manner within 3 h. These studies represent the first demonstration of a reduction of brain A beta in vivo. Development of such novel functional gamma-secretase inhibitors will enable a clinical examination of the A beta hypothesis that Ass peptide drives the neuropathology observed in Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Dipeptides/administration & dosage , Endopeptidases/metabolism , Administration, Oral , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases , Brain/cytology , Brain/drug effects , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Endopeptidases/drug effects , Enzyme Inhibitors/administration & dosage , Female , Humans , Injections, Subcutaneous , Kidney/cytology , Kidney/drug effects , Kidney/metabolism , Male , Mice , Mice, Transgenic , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Peptide Fragments/metabolism
16.
Nat Med ; 6(8): 916-9, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10932230

ABSTRACT

One hallmark of Alzheimer disease is the accumulation of amyloid beta-peptide in the brain and its deposition as plaques. Mice transgenic for an amyloid beta precursor protein (APP) mini-gene driven by a platelet-derived (PD) growth factor promoter (PDAPP mice), which overexpress one of the disease-linked mutant forms of the human amyloid precursor protein, show many of the pathological features of Alzheimer disease, including extensive deposition of extracellular amyloid plaques, astrocytosis and neuritic dystrophy. Active immunization of PDAPP mice with human amyloid beta-peptide reduces plaque burden and its associated pathologies. Several hypotheses have been proposed regarding the mechanism of this response. Here we report that peripheral administration of antibodies against amyloid beta-peptide, was sufficient to reduce amyloid burden. Despite their relatively modest serum levels, the passively administered antibodies were able to enter the central nervous system, decorate plaques and induce clearance of preexisting amyloid. When examined in an ex vivo assay with sections of PDAPP or Alzheimer disease brain tissue, antibodies against amyloid beta-peptide triggered microglial cells to clear plaques through Fc receptor-mediated phagocytosis and subsequent peptide degradation. These results indicate that antibodies can cross the blood-brain barrier to act directly in the central nervous system and should be considered as a therapeutic approach for the treatment of Alzheimer disease and other neurological disorders.


Subject(s)
Alzheimer Disease/therapy , Amyloid beta-Peptides/immunology , Antibodies/administration & dosage , Antibodies/metabolism , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Animals , Disease Models, Animal , Humans , Immunization , In Vitro Techniques , Mice , Mice, Transgenic , Phagocytosis , Plaque, Amyloid/immunology , Plaque, Amyloid/pathology
17.
J Neurosci ; 20(11): 4050-8, 2000 Jun 01.
Article in English | MEDLINE | ID: mdl-10818140

ABSTRACT

Amyloid plaques are a neuropathological hallmark of Alzheimer's disease (AD), but their relationship to neurodegeneration and dementia remains controversial. In contrast, there is a good correlation in AD between cognitive decline and loss of synaptophysin-immunoreactive (SYN-IR) presynaptic terminals in specific brain regions. We used expression-matched transgenic mouse lines to compare the effects of different human amyloid protein precursors (hAPP) and their products on plaque formation and SYN-IR presynaptic terminals. Four distinct minigenes were generated encoding wild-type hAPP or hAPP carrying mutations that alter the production of amyloidogenic Abeta peptides. The platelet-derived growth factor beta chain promoter was used to express these constructs in neurons. hAPP mutations associated with familial AD (FAD) increased cerebral Abeta(1-42) levels, whereas an experimental mutation of the beta-secretase cleavage site (671(M-->I)) eliminated production of human Abeta. High levels of Abeta(1-42) resulted in age-dependent formation of amyloid plaques in FAD-mutant hAPP mice but not in expression-matched wild-type hAPP mice. Yet, significant decreases in the density of SYN-IR presynaptic terminals were found in both groups of mice. Across mice from different transgenic lines, the density of SYN-IR presynaptic terminals correlated inversely with Abeta levels but not with hAPP levels or plaque load. We conclude that Abeta is synaptotoxic even in the absence of plaques and that high levels of Abeta(1-42) are insufficient to induce plaque formation in mice expressing wild-type hAPP. Our results support the emerging view that plaque-independent Abeta toxicity plays an important role in the development of synaptic deficits in AD and related conditions.


Subject(s)
Amyloid beta-Peptides/biosynthesis , Amyloid beta-Protein Precursor/genetics , Peptide Fragments/biosynthesis , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , Synapses/genetics , Synapses/physiology , Aging/pathology , Alzheimer Disease/genetics , Amino Acid Sequence , Amyloid beta-Peptides/genetics , Animals , Humans , Mice , Mice, Transgenic , Molecular Sequence Data , Nerve Degeneration/genetics , Peptide Fragments/genetics , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , Receptors, Presynaptic/genetics , Receptors, Presynaptic/metabolism
18.
Ann N Y Acad Sci ; 920: 274-84, 2000.
Article in English | MEDLINE | ID: mdl-11193164

ABSTRACT

In AD certain brain structures contain a pathological density of A beta protein deposited into plaques. The effect of genetic mutations found in early onset AD patients was an overproduction of A beta 42, strongly suggesting that overproduction of A beta 42 is associated with AD. We hypothesized that an immunological response to A beta 42 might alter its turnover and metabolism. Young PDAPP transgenic mice were immunized with A beta 1-42, which essentially prevented amyloid deposition; astrocytosis was dramatically reduced and there was reduction in A beta-induced inflammatory response as well. A beta 1-42 immunization also appeared to arrest the progression of amyloidosis in older PDAPP mice. A beta immunization appears to increase clearance of amyloid plaques, and may therefore be a novel and effective approach for the treatment of AD.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/prevention & control , Amyloid beta-Peptides/immunology , Amyloid beta-Peptides/metabolism , Peptide Fragments/immunology , Peptide Fragments/metabolism , Alzheimer Disease/microbiology , Amyloidosis/prevention & control , Animals , Antibody Formation , Astrocytes/pathology , Brain/pathology , Gliosis , Hippocampus/pathology , Humans , Immunotherapy , Mice , Mice, Transgenic , Neurites/pathology
19.
Nature ; 400(6740): 173-7, 1999 Jul 08.
Article in English | MEDLINE | ID: mdl-10408445

ABSTRACT

Amyloid-beta peptide (Abeta) seems to have a central role in the neuropathology of Alzheimer's disease (AD). Familial forms of the disease have been linked to mutations in the amyloid precursor protein (APP) and the presenilin genes. Disease-linked mutations in these genes result in increased production of the 42-amino-acid form of the peptide (Abeta42), which is the predominant form found in the amyloid plaques of Alzheimer's disease. The PDAPP transgenic mouse, which overexpresses mutant human APP (in which the amino acid at position 717 is phenylalanine instead of the normal valine), progressively develops many of the neuropathological hallmarks of Alzheimer's disease in an age- and brain-region-dependent manner. In the present study, transgenic animals were immunized with Abeta42, either before the onset of AD-type neuropathologies (at 6 weeks of age) or at an older age (11 months), when amyloid-beta deposition and several of the subsequent neuropathological changes were well established. We report that immunization of the young animals essentially prevented the development of beta-amyloid-plaque formation, neuritic dystrophy and astrogliosis. Treatment of the older animals also markedly reduced the extent and progression of these AD-like neuropathologies. Our results raise the possibility that immunization with amyloid-beta may be effective in preventing and treating Alzheimer's disease.


Subject(s)
Alzheimer Disease/prevention & control , Amyloid beta-Peptides/immunology , Peptide Fragments/immunology , Alzheimer Disease/immunology , Alzheimer Disease/pathology , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Peptides/metabolism , Animals , Astrocytes/pathology , Brain/pathology , Buffers , Enzyme-Linked Immunosorbent Assay , Freund's Adjuvant/administration & dosage , Hippocampus/pathology , Humans , Mice , Mice, Transgenic , Neurites/pathology , Peptide Fragments/administration & dosage , Point Mutation , Serum Amyloid P-Component/administration & dosage , Serum Amyloid P-Component/immunology , Vaccination
20.
Nature ; 389(6651): 603-6, 1997 Oct 09.
Article in English | MEDLINE | ID: mdl-9335500

ABSTRACT

Deposition of amyoid-beta peptide in the central nervous system is a hallmark of Alzheimer's disease and a possible cause of neurodegeneration. The factors that initiate or promote deposition of amyloid-beta peptide are not known. The transforming growth factor TGF-beta1 plays a central role in the response of the brain to injury, and increased TGF-beta1 has been found in the central nervous system of patients with Alzheimer's disease. Here we report that TGF-beta1 induces amyloid-beta deposition in cerebral blood vessels and meninges of aged transgenic mice overexpressing this cytokine from astrocytes. Co-expression of TGF-beta1 in transgenic mice overexpressing amyloid-precursor protein, which develop Alzheimer's like pathology, accelerated the deposition of amyloid-beta peptide. More TGF-beta1 messenger RNA was present in post-mortem brain tissue of Alzheimer's patients than in controls, the levels correlating strongly with amyloid-beta deposition in the damaged cerebral blood vessels of patients with cerebral amyloid angiopathy. These results indicate that overexpression of TGF-beta1 may initiate or promote amyloidogenesis in Alzheimer's disease and in experimental models and so may be a risk factor for developing Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloidosis/metabolism , Transforming Growth Factor beta/physiology , Aged , Aging/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloidosis/pathology , Animals , Astrocytes/metabolism , Benzothiazoles , Brain/metabolism , Brain/pathology , Cerebral Amyloid Angiopathy/metabolism , Cerebral Amyloid Angiopathy/pathology , Humans , Mice , Mice, Inbred BALB C , Mice, Transgenic , Thiazoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...