Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 285(5): 3417-27, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-19923222

ABSTRACT

Immunotherapy targeting of amyloid beta (Abeta) peptide in transgenic mouse models of Alzheimer disease (AD) has been widely demonstrated to resolve amyloid deposition as well as associated neuronal, glial, and inflammatory pathologies. These successes have provided the basis for ongoing clinical trials of immunotherapy for treatment of AD in humans. Acute as well as chronic Abeta-targeted immunotherapy has also been demonstrated to reverse Abeta-related behavioral deficits assessing memory in AD transgenic mouse models. We observe that three antibodies targeting the same linear epitope of Abeta, Abeta(3-7), differ in their ability to reverse contextual fear deficits in Tg2576 mice in an acute testing paradigm. Reversal of contextual fear deficit by the antibodies does not correlate with in vitro recognition of Abeta in a consistent or correlative manner. To better define differences in antigen recognition at the atomic level, we determined crystal structures of Fab fragments in complex with Abeta. The conformation of the Abeta peptide recognized by all three antibodies was highly related and is also remarkably similar to that observed in independently reported Abeta:antibody crystal structures. Sequence and structural differences between the antibodies, particularly in CDR3 of the heavy chain variable region, are proposed to account for differing in vivo properties of the antibodies under study. These findings provide a structural basis for immunotherapeutic strategies targeting Abeta species postulated to underlie cognitive deficits in AD.


Subject(s)
Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Animals , Behavior, Animal , Cross-Linking Reagents/pharmacology , Crystallography, X-Ray/methods , Disease Models, Animal , Epitopes/chemistry , Heterozygote , Humans , Kinetics , Male , Mice , Molecular Conformation , Recombinant Proteins/chemistry
2.
Neurodegener Dis ; 5(2): 65-71, 2008.
Article in English | MEDLINE | ID: mdl-18182780

ABSTRACT

BACKGROUND: In vivo administration of antibodies against the amyloid-beta (Abeta) peptide has been shown to reduce and reverse the progressive amyloidosis that develops in a variety of mouse models of Alzheimer's disease (AD). This work has been extended to clinical trials where subsequent autopsy cases of AD subjects immunized against Abeta showed similar reductions in parenchymal amyloid plaques, suggesting this approach to reduce neuropathology in man is feasible. OBJECTIVE: Multiple hypotheses have been advanced to explain how anti-Abeta antibodies may lower amyloid burden. In this report, we compare approaches utilizing either plaque-binding or peptide-capturing anti-Abeta antibodies for effectiveness in reducing amyloidosis in a mouse model of AD. METHODS: A plaque-binding monoclonal antibody (3D6) and an Abeta peptide-capturing monoclonal antibody (266) were compared in chronic treatment and prevention paradigms using a transgenic mouse model of AD. The effects of antibody therapy on plaque burden and plasma clearance of Abeta were investigated by quantitative imaging and clearance studies of intravenously injected (125)I-Abeta. RESULTS: The plaque-binding antibody 3D6 was highly effective in either treatment or prevention of amyloidosis. In these studies, the peptide-capture antibody 266 showed no reduction in amyloidosis in either paradigm and showed trends towards increasing amyloidosis. Antibody 266 was also found to greatly prolong (>180-fold) the normally rapid peripheral clearance of Abeta, in contrast to that found with 3D6 (>24-fold). CONCLUSION: Reversing and preventing Alzheimer's type amyloidosis is most effectively accomplished with anti-amyloid antibodies that avidly bind plaque.


Subject(s)
Amyloid beta-Peptides/immunology , Amyloidosis/immunology , Antibodies/therapeutic use , Cerebral Cortex/immunology , Plaque, Amyloid/immunology , Amyloid beta-Peptides/blood , Amyloidosis/blood , Amyloidosis/therapy , Animals , Antibodies/metabolism , Cerebral Cortex/pathology , Female , Mice , Mice, Transgenic , Plaque, Amyloid/pathology , Protein Binding/immunology , Solubility
3.
J Biol Chem ; 282(36): 26326-34, 2007 Sep 07.
Article in English | MEDLINE | ID: mdl-17616527

ABSTRACT

The aspartyl protease beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) initiates processing of amyloid precursor protein (APP) into amyloid beta (Abeta) peptide, the major component of Alzheimer disease (AD) plaques. To determine the role that BACE1 plays in the development of Abeta-driven AD-like pathology, we have crossed PDAPP mice, a transgenic mouse model of AD overexpressing human mutated APP, onto mice with either a homozygous or heterozygous BACE1 gene knockout. Analysis of PDAPP/BACE(-/-) mice demonstrated that BACE1 is absolutely required for both Abeta generation and the development of age-associated plaque pathology. Furthermore, synaptic deficits, a neurodegenerative pathology characteristic of AD, were also reversed in the bigenic mice. To determine the extent of BACE1 reduction required to significantly inhibit pathology, PDAPP mice having a heterozygous BACE1 gene knock-out were evaluated for Abeta generation and for the development of pathology. Although the 50% reduction in BACE1 enzyme levels caused only a 12% decrease in Abeta levels in young mice, it nonetheless resulted in a dramatic reduction in Abeta plaques, neuritic burden, and synaptic deficits in older mice. Quantitative analyses indicate that brain Abeta levels in young APP transgenic mice are not the sole determinant for the changes in plaque pathology mediated by reduced BACE1. These observations demonstrate that partial reductions of BACE1 enzyme activity and concomitant Abeta levels lead to dramatic inhibition of Abeta-driven AD-like pathology, making BACE1 an excellent target for therapeutic intervention in AD.


Subject(s)
Alzheimer Disease/enzymology , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Aspartic Acid Endopeptidases/metabolism , Synaptic Membranes/enzymology , Synaptic Membranes/pathology , Aging/genetics , Aging/metabolism , Aging/pathology , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Amyloid Precursor Protein Secretases/deficiency , Amyloid beta-Protein Precursor/genetics , Animals , Aspartic Acid Endopeptidases/deficiency , Disease Models, Animal , Enzyme Activation/genetics , Humans , Mice , Mice, Knockout , Neurites/enzymology , Neurites/pathology
4.
J Neurosci ; 25(40): 9096-101, 2005 Oct 05.
Article in English | MEDLINE | ID: mdl-16207868

ABSTRACT

Alzheimer's disease neuropathology is characterized by key features that include the deposition of the amyloid beta peptide (Abeta) into plaques, the formation of neurofibrillary tangles, and the loss of neurons and synapses in specific brain regions. The loss of synapses, and particularly the associated presynaptic vesicle protein synaptophysin in the hippocampus and association cortices, has been widely reported to be one of the most robust correlates of Alzheimer's disease-associated cognitive decline. The beta-amyloid hypothesis supports the idea that Abeta is the cause of these pathologies. However, the hypothesis is still controversial, in part because the direct role of Abeta in synaptic degeneration awaits confirmation. In this study, we show that Abeta reduction by active or passive Abeta immunization protects against the progressive loss of synaptophysin in the hippocampal molecular layer and frontal neocortex of a transgenic mouse model of Alzheimer's disease. These results, substantiated by quantitative electron microscopic analysis of synaptic densities, strongly support a direct causative role of Abeta in the synaptic degeneration seen in Alzheimer's disease and strengthen the potential of Abeta immunotherapy as a treatment approach for this disease.


Subject(s)
Alzheimer Disease/therapy , Amyloid beta-Peptides/administration & dosage , Immunotherapy , Nerve Degeneration/therapy , Synapses/drug effects , Age Factors , Amyloid beta-Peptides/immunology , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay/methods , Hippocampus/drug effects , Hippocampus/metabolism , Immunohistochemistry/methods , Mice , Mice, Transgenic , Nerve Degeneration/immunology , Nerve Degeneration/metabolism , Peptides/administration & dosage , Peptides/genetics , Peptides/immunology , Synaptophysin/metabolism
5.
Ann Neurol ; 58(3): 430-5, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16130106

ABSTRACT

Serum samples from Alzheimer's disease (AD) patients immunized with Abeta42 (AN1792) were analyzed to determine the induced antibody properties including precise amyloid-beta peptide (Abeta) epitopes and amyloid plaque-binding characteristics. The predominant response in these patients is independent of whether or not meningoencephalitis developed and is against the free amino terminus of Abeta. The immunostaining of amyloid plaques in brain tissue by patient sera is adsorbable by a linear Abeta1-8 peptide, demonstrating that the antibodies are directed predominantly to this epitope and not dependent on Abeta conformations or aggregates specific to plaques. Furthermore, the antibodies are not capable of binding amyloid precursor protein and would be predicted to be competent in facilitating clearance of amyloid plaques in AD brains.


Subject(s)
Alzheimer Disease/prevention & control , Amyloid beta-Peptides/administration & dosage , Amyloid beta-Peptides/immunology , Epitopes/immunology , Immunization/methods , Peptide Fragments/immunology , Alzheimer Disease/immunology , Amyloid beta-Peptides/metabolism , Antibody Specificity , Blotting, Western/methods , Dose-Response Relationship, Immunologic , Epitope Mapping , Humans , Immunization/adverse effects , Immunohistochemistry/methods , Meningoencephalitis/blood , Meningoencephalitis/etiology , Meningoencephalitis/immunology , Peptide Fragments/metabolism
6.
Proc Natl Acad Sci U S A ; 100(4): 2023-8, 2003 Feb 18.
Article in English | MEDLINE | ID: mdl-12566568

ABSTRACT

Transgenic PDAPP mice, which express a disease-linked isoform of the human amyloid precursor protein, exhibit CNS pathology that is similar to Alzheimer's disease. In an age-dependent fashion, the mice develop plaques containing beta-amyloid peptide (Abeta) and exhibit neuronal dystrophy and synaptic loss. It has been shown in previous studies that pathology can be prevented and even reversed by immunization of the mice with the Abeta peptide. Similar protection could be achieved by passive administration of some but not all monoclonal antibodies against Abeta. In the current studies we sought to define the optimal antibody response for reducing neuropathology. Immune sera with reactivity against different Abeta epitopes and monoclonal antibodies with different isotypes were examined for efficacy both ex vivo and in vivo. The studies showed that: (i) of the purified or elicited antibodies tested, only antibodies against the N-terminal regions of Abeta were able to invoke plaque clearance; (ii) plaque binding correlated with a clearance response and neuronal protection, whereas the ability of antibodies to capture soluble Abeta was not necessarily correlated with efficacy; (iii) the isotype of the antibody dramatically influenced the degree of plaque clearance and neuronal protection; (iv) high affinity of the antibody for Fc receptors on microglial cells seemed more important than high affinity for Abeta itself; and (v) complement activation was not required for plaque clearance. These results indicate that antibody Fc-mediated plaque clearance is a highly efficient and effective process for protection against neuropathology in an animal model of Alzheimer's disease.


Subject(s)
Alzheimer Disease/prevention & control , Amyloid beta-Peptides/chemistry , Antibodies, Monoclonal/immunology , Antibody Specificity , Epitopes/immunology , Peptide Fragments/immunology , Alzheimer Disease/immunology , Amino Acid Sequence , Epitope Mapping , Humans , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...