Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Aquat Toxicol ; 224: 105483, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32408005

ABSTRACT

The potential environmental impacts of chemical exposures on wildlife are of growing concern. Freshwater ecosystems are vulnerable to chemical effects and wildlife populations, including fish, can be exposed to concentrations known to cause adverse effects at the individual level. Wild fish populations are also often subjected to numerous other stressors simultaneously which in temperate climates often include sustained periods of food limitation. The potential interactive effects of chemical exposures and food limitation on fish populations are however difficult to establish in the field. Mechanistic modelling approaches can be employed to help predict how the physiological effects of chemicals and food limitation on individuals may translate to population-level effects. Here an energy budget-individual-based model was developed and the control (no chemical) model was validated for the three-spined stickleback. Findings from two endocrine active chemical (EAC) case studies, (ethinyloestradiol and trenbolone) were then used to investigate how effects on individual fecundity translated into predicted population-level effects for environmentally relevant exposures. The cumulative effects of chemical exposure and food limitation were included in these analyses. Results show that effects of each EAC on the population were dependent on energy availability, and effects on population abundance were exacerbated by food limitation. Findings suggest that chemical effects and density dependent food competition interact to determine population responses to chemical exposures. Our study illustrates how mechanistic modelling approaches might usefully be applied to account for specific chemical effects, energy budgets and density-dependent competition, to provide a more integrated evaluation of population outcomes in chemical risk assessments.


Subject(s)
Animal Feed/analysis , Endocrine Disruptors/toxicity , Environmental Exposure/adverse effects , Models, Biological , Smegmamorpha/metabolism , Water Pollutants, Chemical/toxicity , Animals , Ecosystem , Fresh Water/chemistry , Humans , Risk Assessment , Smegmamorpha/growth & development
2.
Proc Biol Sci ; 286(1913): 20191916, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31615360

ABSTRACT

Animal populations will mediate the response of global biodiversity to environmental changes. Population models are thus important tools for both understanding and predicting animal responses to uncertain future conditions. Most approaches, however, are correlative and ignore the individual-level mechanisms that give rise to population dynamics. Here, we assess several existing population modelling approaches and find limitations to both 'correlative' and 'mechanistic' models. We advocate the need for a standardized mechanistic approach for linking individual mechanisms (physiology, behaviour, and evolution) to population dynamics in spatially explicit landscapes. Such an approach is potentially more flexible and informative than current population models. Key to realizing this goal, however, is overcoming current data limitations, the development and testing of eco-evolutionary theory to represent interactions between individual mechanisms, and standardized multi-dimensional environmental change scenarios which incorporate multiple stressors. Such progress is essential in supporting environmental decisions in uncertain future conditions.


Subject(s)
Population Dynamics , Animals , Biodiversity , Biological Evolution , Climate Change , Ecosystem , Models, Biological
3.
Ecol Modell ; 280: 5-17, 2014 May 24.
Article in English | MEDLINE | ID: mdl-25844009

ABSTRACT

Earthworms are important organisms in soil communities and so are used as model organisms in environmental risk assessments of chemicals. However current risk assessments of soil invertebrates are based on short-term laboratory studies, of limited ecological relevance, supplemented if necessary by site-specific field trials, which sometimes are challenging to apply across the whole agricultural landscape. Here, we investigate whether population responses to environmental stressors and pesticide exposure can be accurately predicted by combining energy budget and agent-based models (ABMs), based on knowledge of how individuals respond to their local circumstances. A simple energy budget model was implemented within each earthworm Eisenia fetida in the ABM, based on a priori parameter estimates. From broadly accepted physiological principles, simple algorithms specify how energy acquisition and expenditure drive life cycle processes. Each individual allocates energy between maintenance, growth and/or reproduction under varying conditions of food density, soil temperature and soil moisture. When simulating published experiments, good model fits were obtained to experimental data on individual growth, reproduction and starvation. Using the energy budget model as a platform we developed methods to identify which of the physiological parameters in the energy budget model (rates of ingestion, maintenance, growth or reproduction) are primarily affected by pesticide applications, producing four hypotheses about how toxicity acts. We tested these hypotheses by comparing model outputs with published toxicity data on the effects of copper oxychloride and chlorpyrifos on E. fetida. Both growth and reproduction were directly affected in experiments in which sufficient food was provided, whilst maintenance was targeted under food limitation. Although we only incorporate toxic effects at the individual level we show how ABMs can readily extrapolate to larger scales by providing good model fits to field population data. The ability of the presented model to fit the available field and laboratory data for E. fetida demonstrates the promise of the agent-based approach in ecology, by showing how biological knowledge can be used to make ecological inferences. Further work is required to extend the approach to populations of more ecologically relevant species studied at the field scale. Such a model could help extrapolate from laboratory to field conditions and from one set of field conditions to another or from species to species.

SELECTION OF CITATIONS
SEARCH DETAIL
...