Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 3064, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32528004

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Commun ; 11(1): 2014, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32332733

ABSTRACT

Astrocytes support the energy demands of synaptic transmission and plasticity. Enduring changes in synaptic efficacy are highly sensitive to stress, yet whether changes to astrocyte bioenergetic control of synapses contributes to stress-impaired plasticity is unclear. Here we show in mice that stress constrains the shuttling of glucose and lactate through astrocyte networks, creating a barrier for neuronal access to an astrocytic energy reservoir in the hippocampus and neocortex, compromising long-term potentiation. Impairing astrocytic delivery of energy substrates by reducing astrocyte gap junction coupling with dominant negative connexin 43 or by disrupting lactate efflux was sufficient to mimic the effects of stress on long-term potentiation. Furthermore, direct restoration of the astrocyte lactate supply alone rescued stress-impaired synaptic plasticity, which was blocked by inhibiting neural lactate uptake. This gating of synaptic plasticity in stress by astrocytic metabolic networks indicates a broader role of astrocyte bioenergetics in determining how experience-dependent information is controlled.


Subject(s)
Astrocytes/metabolism , Energy Metabolism/physiology , Long-Term Potentiation/physiology , Neurons/physiology , Stress, Psychological/metabolism , Adaptation, Psychological/physiology , Animals , Disease Models, Animal , Female , Glucose/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Humans , Lactic Acid/metabolism , Male , Metabolic Networks and Pathways/physiology , Mice , Neocortex/cytology , Neocortex/metabolism , Patch-Clamp Techniques
3.
Cell Rep ; 20(9): 2156-2168, 2017 Aug 29.
Article in English | MEDLINE | ID: mdl-28854365

ABSTRACT

Although Netos are considered auxiliary subunits critical for kainate receptor (KAR) function, direct evidence for their regulation of native KARs is limited. Because Neto KAR regulation is GluK subunit/Neto isoform specific, such regulation must be determined in cell-type-specific contexts. We demonstrate Neto1/2 expression in somatostatin (SOM)-, cholecystokinin/cannabinoid receptor 1 (CCK/CB1)-, and parvalbumin (PV)-containing interneurons. KAR-mediated excitation of these interneurons is contingent upon Neto1 because kainate yields comparable effects in Neto2 knockouts and wild-types but fails to excite interneurons or recruit inhibition in Neto1 knockouts. In contrast, presynaptic KARs in CCK/CB1 interneurons are dually regulated by both Neto1 and Neto2. Neto association promotes tonic presynaptic KAR activation, dampening CCK/CB1 interneuron output, and loss of this brake in Neto mutants profoundly increases CCK/CB1 interneuron-mediated inhibition. Our results confirm that Neto1 regulates endogenous somatodendritic KARs in diverse interneurons and demonstrate Neto regulation of presynaptic KARs in mature inhibitory presynaptic terminals.


Subject(s)
Dendrites/metabolism , Interneurons/metabolism , LDL-Receptor Related Proteins/metabolism , Membrane Proteins/metabolism , Nerve Net/metabolism , Neural Inhibition , Receptors, Kainic Acid/metabolism , Receptors, Presynaptic/metabolism , Animals , Gamma Rhythm , Ion Channel Gating , Kainic Acid , Mice, Knockout , Mice, Mutant Strains , Mutation/genetics , Promoter Regions, Genetic/genetics , Protein Subunits/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, N-Methyl-D-Aspartate
4.
Nat Neurosci ; 18(5): 708-17, 2015 May.
Article in English | MEDLINE | ID: mdl-25894291

ABSTRACT

Intracellular Ca(2+) signaling is considered to be important for multiple astrocyte functions in neural circuits. However, mice devoid of inositol triphosphate type 2 receptors (IP3R2) reportedly lack all astrocyte Ca(2+) signaling, but display no neuronal or neurovascular deficits, implying that astrocyte Ca(2+) fluctuations are not involved in these functions. An assumption has been that the loss of somatic Ca(2+) fluctuations also reflects a similar loss in astrocyte processes. We tested this assumption and found diverse types of Ca(2+) fluctuations in astrocytes, with most occurring in processes rather than in somata. These fluctuations were preserved in Ip3r2(-/-) (also known as Itpr2(-/-)) mice in brain slices and in vivo, occurred in end feet, and were increased by G protein-coupled receptor activation and by startle-induced neuromodulatory responses. Our data reveal previously unknown Ca(2+) fluctuations in astrocytes and highlight limitations of studies that used Ip3r2(-/-) mice to evaluate astrocyte contributions to neural circuit function and mouse behavior.


Subject(s)
Astrocytes/physiology , Calcium Signaling/physiology , Inositol 1,4,5-Trisphosphate Receptors/deficiency , Reflex, Startle/physiology , Animals , Astrocytes/ultrastructure , Crosses, Genetic , Female , Fluorescent Dyes , Hippocampus/cytology , Hippocampus/physiology , Inositol 1,4,5-Trisphosphate Receptors/genetics , Male , Mice , Mice, Transgenic , Prazosin/pharmacology , Reflex, Startle/drug effects , Software
5.
J Physiol ; 592(19): 4187-99, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25107925

ABSTRACT

Rhythmic cortical neuronal oscillations in the gamma frequency band (30-80 Hz, gamma oscillations) have been associated with cognitive processes such as sensory perception and integration, attention, learning, and memory. Gamma oscillations are disrupted in disorders for which cognitive deficits are hallmark symptoms such as schizophrenia and Alzheimer's disease.In vitro, various neurotransmitters have been found to modulate gamma oscillations. Serotonin(5-HT) has long been known to be important for both behavioural and cognitive functions such as learning and memory. Multiple 5-HT receptor subtypes are expressed in the CA3 region of the hippocampus and high doses of 5-HT reduce the power of induced gamma oscillations.Hypothesizing that 5-HT may have cell- and receptor subtype-specific modulatory effects, we investigated the receptor subtypes, cell types and cellular mechanisms engaged by 5-HT in the modulation of gamma oscillations in mice and rats. We found that 5-HT decreases the power of kainate-induced hippocampal gamma oscillations in both species via the 5-HT1A receptor subtype. Whole-cell patch clamp recordings demonstrated that this decrease was caused by a hyperpolarization of CA3 pyramidal cells and a reduction of their firing frequency, but not by alteration of inhibitory neurotransmission. Finally, our results show that the effect on pyramidal cells is mediated via the G protein-coupled receptor inwardly rectifying potassium channel Kir3.Our findings suggest this novel cellular mechanism as a potential target for therapies that are aimed at alleviating cognitive decline by helping the brain to maintain or re-establish normal gamma oscillation levels in neuropsychiatric and neurodegenerative disorders.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Hippocampus/drug effects , Pyramidal Cells/drug effects , Receptor, Serotonin, 5-HT1A/metabolism , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin/pharmacology , Animals , Excitatory Amino Acid Agonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Hippocampus/physiology , Kainic Acid/pharmacology , Patch-Clamp Techniques , Pyramidal Cells/physiology , Rats , Rats, Sprague-Dawley
6.
J Physiol ; 592(16): 3463-94, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24879872

ABSTRACT

Parvalbumin-containing (PV) neurons, a major class of GABAergic interneurons, are essential circuit elements of learning networks. As levels of acetylcholine rise during active learning tasks, PV neurons become increasingly engaged in network dynamics. Conversely, impairment of either cholinergic or PV interneuron function induces learning deficits. Here, we examined PV interneurons in hippocampus (HC) and prefrontal cortex (PFC) and their modulation by muscarinic acetylcholine receptors (mAChRs). HC PV cells, visualized by crossing PV-CRE mice with Rosa26YFP mice, were anatomically identified as basket cells and PV bistratified cells in the stratum pyramidale; in stratum oriens, HC PV cells were electrophysiologically distinct from somatostatin-containing cells. With glutamatergic transmission pharmacologically blocked, mAChR activation enhanced PV cell excitability in both CA1 HC and PFC; however, CA1 HC PV cells exhibited a stronger postsynaptic depolarization than PFC PV cells. To delete M1 mAChRs genetically from PV interneurons, we created PV-M1 knockout mice by crossing PV-CRE and floxed M1 mice. The elimination of M1 mAChRs from PV cells diminished M1 mAChR immunoreactivity and muscarinic excitation of HC PV cells. Selective cholinergic activation of HC PV interneurons using Designer Receptors Exclusively Activated by Designer Drugs technology enhanced the frequency and amplitude of inhibitory synaptic currents in CA1 pyramidal cells. Finally, relative to wild-type controls, PV-M1 knockout mice exhibited impaired novel object recognition and, to a lesser extent, impaired spatial working memory, but reference memory remained intact. Therefore, the direct activation of M1 mAChRs on PV cells contributes to some forms of learning and memory.


Subject(s)
Action Potentials , Cognition , Inhibitory Postsynaptic Potentials , Interneurons/metabolism , Receptor, Muscarinic M1/metabolism , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , Female , Interneurons/physiology , Male , Mice , Parvalbumins/genetics , Parvalbumins/metabolism , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Receptor, Muscarinic M1/genetics
7.
Proc Natl Acad Sci U S A ; 109(32): 13118-23, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22822214

ABSTRACT

The neuregulin/ErbB signaling network is genetically associated with schizophrenia and modulates hippocampal γ oscillations--a type of neuronal network activity important for higher brain processes and altered in psychiatric disorders. Because neuregulin-1 (NRG-1) dramatically increases extracellular dopamine levels in the hippocampus, we investigated the relationship between NRG/ErbB and dopamine signaling in hippocampal γ oscillations. Using agonists for different D1- and D2-type dopamine receptors, we found that the D4 receptor (D4R) agonist PD168077, but not D1/D5 and D2/D3 agonists, increases γ oscillation power, and its effect is blocked by the highly specific D4R antagonist L-745,870. Using double in situ hybridization and immunofluorescence histochemistry, we show that hippocampal D4R mRNA and protein are more highly expressed in GAD67-positive GABAergic interneurons, many of which express the NRG-1 receptor ErbB4. Importantly, D4 and ErbB4 receptors are coexpressed in parvalbumin-positive basket cells that are critical for γ oscillations. Last, we report that D4R activation is essential for the effects of NRG-1 on network activity because L-745,870 and the atypical antipsychotic clozapine dramatically reduce the NRG-1-induced increase in γ oscillation power. This unique link between D4R and ErbB4 signaling on γ oscillation power, and their coexpression in parvalbumin-expressing interneurons, suggests a cellular mechanism that may be compromised in different psychiatric disorders affecting cognitive control. These findings are important given the association of a DRD4 polymorphism with alterations in attention, working memory, and γ oscillations, and suggest potential benefits of D4R modulators for targeting cognitive deficits.


Subject(s)
Brain Waves/physiology , Dopamine/metabolism , Hippocampus/physiology , Neuregulins/metabolism , Receptors, Dopamine D4/metabolism , Signal Transduction/physiology , Animals , Dopamine/pharmacology , Fluorescent Antibody Technique , Fourier Analysis , Hippocampus/drug effects , Immunohistochemistry , In Situ Hybridization , Interneurons/metabolism , Neuregulins/pharmacology , Pyridines/pharmacology , Pyrroles/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D4/antagonists & inhibitors , Reverse Transcriptase Polymerase Chain Reaction
8.
PLoS One ; 7(7): e40906, 2012.
Article in English | MEDLINE | ID: mdl-22815864

ABSTRACT

BACKGROUND: Gamma oscillations are electric activity patterns of the mammalian brain hypothesized to serve attention, sensory perception, working memory and memory encoding. They are disrupted or altered in schizophrenic patients with associated cognitive deficits, which persist in spite of treatment with antipsychotics. Because cognitive symptoms are a core feature of schizophrenia it is relevant to explore signaling pathways that potentially regulate gamma oscillations. Dopamine has been reported to decrease gamma oscillation power via D1-like receptors. Based on the expression pattern of D4 receptors (D4R) in hippocampus, and pharmacological effects of D4R ligands in animals, we hypothesize that they are in a position to regulate gamma oscillations as well. METHODOLOGY/PRINCIPAL FINDINGS: To address this hypothesis we use rat hippocampal slices and kainate-induced gamma oscillations. Local field potential recordings as well as intracellular recordings of pyramidal cells, fast-spiking and non-fast-spiking interneurons were carried out. We show that D4R activation with the selective ligand PD168077 increases gamma oscillation power, which can be blocked by the D4R-specific antagonist L745,870 as well as by the antipsychotic drug Clozapine. Pyramidal cells did not exhibit changes in excitatory or inhibitory synaptic current amplitudes, but inhibitory currents became more coherent with the oscillations after application of PD168077. Fast-spiking, but not non-fast spiking, interneurons, increase their action potential phase-coupling and coherence with regard to ongoing gamma oscillations in response to D4R activation. Among several possible mechanisms we found that the NMDA receptor antagonist AP5 also blocks the D4R mediated increase in gamma oscillation power. CONCLUSIONS/SIGNIFICANCE: We conclude that D4R activation affects fast-spiking interneuron synchronization and thereby increases gamma power by an NMDA receptor-dependent mechanism. This suggests that converging deficits on fast-spiking interneurons may lead to decreased network function and thus aberrant gamma oscillations and cognitive decline in schizophrenia.


Subject(s)
Action Potentials/physiology , Brain Waves/physiology , Cortical Synchronization/physiology , Hippocampus/physiology , Interneurons/physiology , Receptors, Dopamine D4/metabolism , Animals , Excitatory Postsynaptic Potentials/physiology , In Vitro Techniques , Inhibitory Postsynaptic Potentials/physiology , Male , Pyramidal Cells/physiology , Rats , Rats, Sprague-Dawley , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...