Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(35): e202308048, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37409777

ABSTRACT

We report a cobalt-catalyzed Wagner-Meerwein rearrangement of gem-disubstituted allylarenes that generates fluoroalkane products with isolated yields up to 84 %. Modification of the counteranion of the N-fluoropyridinium oxidant suggests the substrates undergo nucleophilic fluorination during the reaction. Subjecting the substrates to other known metal-mediated hydrofluorination procedures did not lead to observable 1,2-aryl migration. Thus, indicating the unique ability of these cobalt-catalyzed conditions to generate a sufficiently reactive electrophilic intermediate capable of promoting this Wagner-Meerwein rearrangement.

2.
J Am Chem Soc ; 142(34): 14649-14663, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32786804

ABSTRACT

The mechanism of CF2 transfer from TMSCF3 (1), mediated by TBAT (2-12 mol %) or by NaI (5-20 mol %), has been investigated by in situ/stopped-flow 19F NMR spectroscopic analysis of the kinetics of alkene difluorocyclopropanation and competing TFE/c-C3F6/homologous perfluoroanion generation, 13C/2H KIEs, LFERs, CF2 transfer efficiency and selectivity, the effect of inhibitors, and density functional theory (DFT) calculations. The reactions evolve with profoundly different kinetics, undergoing autoinhibition (TBAT) or quasi-stochastic autoacceleration (NaI) and cogenerating perfluoroalkene side products. An overarching mechanism involving direct and indirect fluoride transfer from a CF3 anionoid to TMSCF3 (1) has been elucidated. It allows rationalization of why the NaI-mediated process is more effective for less-reactive alkenes and alkynes, why a large excess of TMSCF3 (1) is required in all cases, and why slow-addition protocols can be of benefit. Issues relating to exothermicity, toxicity, and scale-up are also noted.

3.
Nat Chem ; 11(5): 400-401, 2019 05.
Article in English | MEDLINE | ID: mdl-31019313
4.
J Am Chem Soc ; 140(35): 11112-11124, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30080973

ABSTRACT

The mechanism of CF3 transfer from R3SiCF3 (R = Me, Et, iPr) to ketones and aldehydes, initiated by M+X- (<0.004 to 10 mol %), has been investigated by analysis of kinetics (variable-ratio stopped-flow NMR and IR), 13C/2H KIEs, LFER, addition of ligands (18-c-6, crypt-222), and density functional theory calculations. The kinetics, reaction orders, and selectivity vary substantially with reagent (R3SiCF3) and initiator (M+X-). Traces of exogenous inhibitors present in the R3SiCF3 reagents, which vary substantially in proportion and identity between batches and suppliers, also affect the kinetics. Some reactions are complete in milliseconds, others take hours, and others stall before completion. Despite these differences, a general mechanism has been elucidated in which the product alkoxide and CF3- anion act as chain carriers in an anionic chain reaction. Silyl enol ether generation competes with 1,2-addition and involves protonation of CF3- by the α-C-H of the ketone and the OH of the enol. The overarching mechanism for trifluoromethylation by R3SiCF3, in which pentacoordinate siliconate intermediates are unable to directly transfer CF3- as a nucleophile or base, rationalizes why the turnover rate (per M+X- initiator) depends on the initial concentration (but not identity) of X-, the identity (but not concentration) of M+, the identity of the R3SiCF3 reagent, and the carbonyl/R3SiCF3 ratio. It also rationalizes which R3SiCF3 reagent effects the most rapid trifluoromethylation, for a specific M+X- initiator.

5.
Nature ; 536(7616): 322-5, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27535536

ABSTRACT

In the past 50 years, cross-coupling reactions mediated by transition metals have changed the way in which complex organic molecules are synthesized. The predictable and chemoselective nature of these transformations has led to their widespread adoption across many areas of chemical research. However, the construction of a bond between two sp(3)-hybridized carbon atoms, a fundamental unit of organic chemistry, remains an important yet elusive objective for engineering cross-coupling reactions. In comparison to related procedures with sp(2)-hybridized species, the development of methods for sp(3)-sp(3) bond formation via transition metal catalysis has been hampered historically by deleterious side-reactions, such as ß-hydride elimination with palladium catalysis or the reluctance of alkyl halides to undergo oxidative addition. To address this issue, nickel-catalysed cross-coupling processes can be used to form sp(3)-sp(3) bonds that utilize organometallic nucleophiles and alkyl electrophiles. In particular, the coupling of alkyl halides with pre-generated organozinc, Grignard and organoborane species has been used to furnish diverse molecular structures. However, the manipulations required to produce these activated structures is inefficient, leading to poor step- and atom-economies. Moreover, the operational difficulties associated with making and using these reactive coupling partners, and preserving them through a synthetic sequence, has hindered their widespread adoption. A generically useful sp(3)-sp(3) coupling technology that uses bench-stable, native organic functional groups, without the need for pre-functionalization or substrate derivatization, would therefore be valuable. Here we demonstrate that the synergistic merger of photoredox and nickel catalysis enables the direct formation of sp(3)-sp(3) bonds using only simple carboxylic acids and alkyl halides as the nucleophilic and electrophilic coupling partners, respectively. This metallaphotoredox protocol is suitable for many primary and secondary carboxylic acids. The merit of this coupling strategy is illustrated by the synthesis of the pharmaceutical tirofiban in four steps from commercially available starting materials.


Subject(s)
Carbon/chemistry , Carboxylic Acids/chemistry , Nickel/chemistry , Catalysis , Molecular Structure , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Tirofiban , Tyrosine/analogs & derivatives , Tyrosine/chemical synthesis , Tyrosine/chemistry
7.
J Am Chem Soc ; 137(41): 13414-24, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26397716

ABSTRACT

A catalytic enantioselective approach to the synthesis of indolines bearing two asymmetric centers, one of which is all-carbon and quaternary, is described. This reaction proceeds with high levels of diastereoselectivity (>20:1) and high levels of enantioselectivity (up to 99.5:0.5 er) in the presence of CsOH·H2O and a quinine-derived ammonium salt. The reaction most likely proceeds via a delocalized 2-aza-pentadienyl anion that cyclizes either by a suprafacial electrocyclic mechanism, or through a kinetically controlled 5-endo-trig Mannich process. Density functional theory calculations are used to probe these two mechanistic pathways and lead to the conclusion that a nonpericyclic mechanism is most probable. The base-catalyzed interconversion of diastereoisomeric indolines in the presence of certain quaternary ammonium catalysts is observed; this may be rationalized as a cycloreversion-cyclization process. Mechanistic investigations have demonstrated that the reaction is initiated via a Makosza-like interfacial process, and kinetic analysis has shown that the reaction possesses a significant induction period consistent with autoinduction. A zwitterionic quinine-derived entity generated by deprotonation of an ammonium salt with the anionic reaction product is identified as a key catalytic species and the role that protonation plays in the enantioselective process outlined. We also propose that the reaction subsequently occurs entirely within the organic phase. Consequently, the reaction may be better described as a phase-transfer-initiated rather than a phase-transfer-catalyzed process; this observation may have implications for mechanistic pathways followed by other phase-transfer-mediated reactions.

9.
Angew Chem Int Ed Engl ; 53(13): 3315-7, 2014 Mar 24.
Article in English | MEDLINE | ID: mdl-24574254
10.
Nat Chem ; 7(2): 171-7, 2014 02.
Article in English | MEDLINE | ID: mdl-25615672

ABSTRACT

5-Endo-trig cyclizations are generally considered to be kinetically unfavourable, as described by Baldwin's rules. Consequently, observation of this mode of reaction under kinetic control is rare. This is usually ascribed to challenges in achieving appropriate approach trajectories for orbital overlap in the transition state. Here, we describe a highly enantio- and diastereoselective route to complex indanes bearing all-carbon quaternary stereogenic centres via a 5-endo-trig cyclization catalysed by a chiral ammonium salt. Through computation, the preference for the formally disfavoured 5-endo-trig Michael reaction over the formally favoured 5-exo-trig Dieckmann reaction is shown to result from thermodynamic contributions to the innate selectivity of the nucleophilic group, which outweigh the importance of the approach trajectory as embodied by Baldwin's rules. Our experimental and theoretical findings demonstrate that geometric and stereoelectronic constraints may not be decisive in the observed outcome of irreversible ring-closing reactions.

11.
Chemistry ; 18(8): 2398-408, 2012 Feb 20.
Article in English | MEDLINE | ID: mdl-22262624

ABSTRACT

The structural motif within a series of tetrahydropyrimidine-based isothioureas necessary for generating high asymmetric induction in the asymmetric Steglich rearrangement of oxazolyl carbonates is fully explored, with crossover and dynamic (19)F NMR experiments used to develop a mechanistic understanding of this transformation.


Subject(s)
Carbonates/chemistry , Lewis Bases/chemistry , Oxazoles/chemistry , Pyrimidines/chemistry , Thiourea/chemistry , Catalysis , Magnetic Resonance Spectroscopy , Molecular Structure , Stereoisomerism
12.
Org Biomol Chem ; 9(2): 559-70, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21072411

ABSTRACT

The catalytic activity and enantioselectivity in the kinetic resolution of (±)-1-naphthylethanol with a range of structurally related 3,4-dihydropyrimido[2,1-b]benzothiazole-based catalysts is examined. Of the isothiourea catalysts screened, (2S,3R)-2-phenyl-3-isopropyl substitution proved optimal, giving good levels of selectivity in the kinetic resolution of a number of secondary alcohols (S values up to >100 at ~50% conversion). Low catalyst loadings (0.10-0.25 mol%) of the optimal isothiourea can be used to generate enantiopure alcohols (>99% ee) in good yields.


Subject(s)
Benzothiazoles/chemistry , Thiourea/chemistry , Acylation , Amines/chemistry , Catalysis , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...