Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
2.
J Biol Chem ; 254(8): 2575-8, 1979 Apr 25.
Article in English | MEDLINE | ID: mdl-218944

ABSTRACT

The medium and cell surface heparan sulfates isolated from SV40-transformed Swiss mouse 3T3 cells were examined in the presence and absence of 1.0 mM p-nitrophenyl-beta-D-xyloside. Incubation of the SV3T3 cells with this beta-xyloside resulted in: (a) a 4- to 5-fold reduction in the molecular weight distribution of medium heparan sulfate, (b) a 10-fold increase in the total synthesis of medium heparan sulfate, and (c) a small reduction in cell growth. There was little, if any, change in either the total level of synthesis or the molecular weight distribution of cell surface heparan sulfate. The covalent association of the beta-xyloside to the medium heparan sulfate was demonstrated by an analysis of the medium heparan sulfate produced by cells grown in the presence of [35S]sulfate and the fluorogenic beta-xyloside, 4-methylumbelliferyl-beta-D-xyloside. Treatment of the purified radiolabeled and fluorogenic heparan sulfate with either nitrous acid or heparitinase resulted in a decrease in the molecular weight of both radiolabeled and fluorogenic material. The data presented in this paper are discussed with respect to both the structure of heparan sulfate and the putative role of heparan sulfate in cell social behavior.


Subject(s)
Cell Transformation, Viral , Glycosaminoglycans/biosynthesis , Glycosides/pharmacology , Heparitin Sulfate/biosynthesis , Simian virus 40 , Animals , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Mice , Xylose/analogs & derivatives , Xylose/pharmacology
3.
Biochim Biophys Acta ; 583(1): 81-94, 1979 Feb 19.
Article in English | MEDLINE | ID: mdl-217450

ABSTRACT

Three major pools of heparan sulfate have been isolated from cultures of Swiss mouse 3T3 and SV40-transformed 3T3 cells: cell-surface, medium, and intracellular heparan sulfates. The cell-surface heparan sulfate is a high molecular weight proteoglycan which is partially degraded by pronase. Before pronase treatment, it has a peak molecular weight (as estimated by gel filtration) of approx. 7.2 . 10(5) in contrast to only 2.4 . 10(5) after pronase treatment. The medium heparan sulfate appears to be similar in structure to the cell-surface heparan sulfate, since they coelute on Bio-Gel A-15m and DEAE-cellulose, and are both proteoglycans. In contrast, the intracellular heparan sulfate has a low molecular weight (6.0 . 10(3)) and has little if any attached protein. Both the medium and intracellular heparan sulfate exhibit the transformation-associated change in structure reported earlier for cell-surface heparan sulfate (Underhill, C.B. and Keller, J.M. )1975) Biochem. Biophys. Res. Commun. 63, 448--454). This transformation-associated change, detected by DEAE-cellulose chromatography is not the result of changes in either molecular weight or protein core. Cellulose acetate electrophoresis of the cell-surface heparan sulfate at pH 1 suggests that the transformation-associated change in structure is due to a difference in sulfate content. Both types of heparan sulfate are produced in mixed cultures of 3T3 and SV3T3 cells, indicating that neither serum factors in the culture medium nor secreted cell products are responsible for the transformation-associated change in heparan sulfate structure. The presented data are discussed with respect to the postulated role of heparan sulfate in cell social behavior.


Subject(s)
Cell Transformation, Viral , Glycosaminoglycans/metabolism , Heparitin Sulfate/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Culture Media , Fibroblasts/metabolism , Heparitin Sulfate/isolation & purification , Mice , Molecular Weight , Pronase , Simian virus 40
5.
Biochemistry ; 16(7): 1251-7, 1977 Apr 05.
Article in English | MEDLINE | ID: mdl-14677

ABSTRACT

Membrane preparations from Gaffkya homari catalyzed the in vitro biosynthesis of soluble uncross-linked spin-labeled peptidoglycan, a uniformly labeled polynitroxide, from the spin-labeled nucleotide UDP-MurNAc-Ala-DGlu-Lys(Nepsilon-2,2,5,5-tetramethyl-1-pyrrolin-1-oxyl-3-carbonyl)-DAla-DAla (I) and UDP-GlcNAc. Soluble spin-labeled peptidoglycan was separated from membrane fragments and its spin-labeled precursor by centrifugation and gel filtration. The molecular weight distribution of the polymer was examined by agarose gel filtration. Spin-labeled [14C]peptidoglycan was polydisperse with a peak of radioactivity corresponding to a molecular weight of 5.0 X 10(5). The electron spin resonance spectrum of spin-labeled peptidoglycan was extensively broadened by spin-spin exchange interactions. These interactions were modified by changes in temperature, reduction by ascorbate, hydrolysis by lysozyme, and complexation with the antibiotic, vancomycin. Spin-spin exchange was reduced or eliminated in spin-labeled peptidoglycan by the random reduction of free radicals by ascorbate. A rotational correlation time of 0.37 ns was calculated for the probe in partially reduced spin-labeled peptidoglycan. This compares to a correlation time of 0.13 ns for the substrate (I). Raising the temperature increases spin-spin exchange line broadening. No transition points were observed for spin-labeled peptidoglycan as measured by this method. Degradati on of spin-labeled peptidoglycan by lysozyme eliminated the observed spin-spin exchange and yielded products with a mobility similar to I. Complexation of spin-labeled peptidoglycan with vancomycin resulted in both pronounced free-radical immobilization and a decrease in spin-spin exchange. The exchange effects are consistent with distance measurements in molecular models for peptidoglycan.


Subject(s)
Peptidoglycan , Binding Sites , Cell Membrane/metabolism , Electron Spin Resonance Spectroscopy , Kinetics , Micrococcus/metabolism , Molecular Weight , Peptidoglycan/biosynthesis , Protein Binding , Protein Conformation , Spin Labels , Streptococcaceae/metabolism
7.
Biochemistry ; 14(12): 2754-60, 1975 Jun 17.
Article in English | MEDLINE | ID: mdl-167805

ABSTRACT

Phospho-N-acetylmuramyl-pentapeptide translocase (UDP-MurNAc-Ala-DGlu-Lys-DAla-DAla:undecaprenyl phosphate, phospho-MurNAc-pentapeptide transferase) catalyzes the initial membrane reaction in the biosynthesis of peptidoglycan. The spin-labeled nucleotide, UDP-MurNAc-Ala-DGlu-Lys (Nepsilon-2,2,5,5-tetramethyl-N-oxyl-pyrroline-3-carbonyl)-DAla-DAla, was used as a substrate by this enzyme for the synthesis of membrane-associated undecaprenyl-diphosphate-MurNAc-Ala-DGlu-Lys(Nepsilon-Tempyo)-DAla-DAla. The spin-labeled substrate and product complex with the antibiotics vancomycin and ristocetin. The association constants for the spin-labeled nucleotide are 6.2 times 10(5) and 6.2 times 10(4) M-1 for vancomycin and ristocetin, respectively. The association constants for the spin-labeled lipid intermediate are 3.0 times 10(4) and 2.1 times 10(4) M-1 for vancomycin and ristocetin, respectively. These results indicate that the acyl-DAla termini of membranes-associated spin-labeled undecaprenyl-diphosphate-MurNAc-pentapeptide are accessible to vancomycin and ristocetin and that the association constants are smaller than those determined for the corresponding antibiotic spin-labeled UDP-MurNAc-pentapeptide complexes.


Subject(s)
Cell Membrane/metabolism , Peptidoglycan/biosynthesis , Ristocetin/pharmacology , Staphylococcus/metabolism , Vancomycin/pharmacology , Binding Sites , Chromatography, DEAE-Cellulose , Electron Spin Resonance Spectroscopy , Kinetics , Mathematics , Molecular Conformation , Muramic Acids/analysis , Oligopeptides , Peptidoglycan/isolation & purification , Protein Binding , Protein Conformation , Receptors, Drug , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL
...