Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 20(10): 3004-25, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24802817

ABSTRACT

Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.


Subject(s)
Aquatic Organisms , Climate Change , Ice Cover , Antarctic Regions , Biota , Ecosystem , Oceans and Seas , Water Movements , Wind
2.
Proc Biol Sci ; 274(1629): 3057-67, 2007 Dec 22.
Article in English | MEDLINE | ID: mdl-17939986

ABSTRACT

Determining how climate fluctuations affect ocean ecosystems requires an understanding of how biological and physical processes interact across a wide range of scales. Here we examine the role of physical and biological processes in generating fluctuations in the ecosystem around South Georgia in the South Atlantic sector of the Southern Ocean. Anomalies in sea surface temperature (SST) in the South Pacific sector of the Southern Ocean have previously been shown to be generated through atmospheric teleconnections with El Niño Southern Oscillation (ENSO)-related processes. These SST anomalies are propagated via the Antarctic Circumpolar Current into the South Atlantic (on time scales of more than 1 year), where ENSO and Southern Annular Mode-related atmospheric processes have a direct influence on short (less than six months) time scales. We find that across the South Atlantic sector, these changes in SST, and related fluctuations in winter sea ice extent, affect the recruitment and dispersal of Antarctic krill. This oceanographically driven variation in krill population dynamics and abundance in turn affects the breeding success of seabird and marine mammal predators that depend on krill as food. Such propagating anomalies, mediated through physical and trophic interactions, are likely to be an important component of variation in ocean ecosystems and affect responses to longer term change. Population models derived on the basis of these oceanic fluctuations indicate that plausible rates of regional warming of 1oC over the next 100 years could lead to more than a 95% reduction in the biomass and abundance of krill across the Scotia Sea by the end of the century.


Subject(s)
Climate , Ecosystem , Animals , Antarctic Regions , Euphausiacea/physiology , Fur Seals/physiology , Oceans and Seas , Population Dynamics , Predatory Behavior/physiology , Temperature
3.
Philos Trans R Soc Lond B Biol Sci ; 362(1488): 2187-9, 2007 Dec 29.
Article in English | MEDLINE | ID: mdl-17553772

ABSTRACT

The Antarctic biota has evolved over the last 100 million years in increasingly isolated and cold conditions. As a result, Antarctic species, from micro-organisms to vertebrates, have adapted to life at extremely low temperatures, including changes in the genome, physiology and ecological traits such as life history. Coupled with cycles of glaciation that have promoted speciation in the Antarctic, this has led to a unique biota in terms of biogeography, patterns of species distribution and endemism. Specialization in the Antarctic biota has led to trade-offs in many ecologically important functions and Antarctic species may have a limited capacity to adapt to present climate change. These include the direct effects of changes in environmental parameters and indirect effects of increased competition and predation resulting from altered life histories of Antarctic species and the impacts of invasive species. Ultimately, climate change may alter the responses of Antarctic ecosystems to harvesting from humans. The unique adaptations of Antarctic species mean that they provide unique models of molecular evolution in natural populations. The simplicity of Antarctic communities, especially from terrestrial systems, makes them ideal to investigate the ecological implications of climate change, which are difficult to identify in more complex systems.


Subject(s)
Adaptation, Biological/genetics , Biodiversity , Biological Evolution , Ecosystem , Animals , Antarctic Regions
4.
Philos Trans R Soc Lond B Biol Sci ; 362(1477): 5-9, 2007 Jan 29.
Article in English | MEDLINE | ID: mdl-17405205

ABSTRACT

Antarctica offers a unique natural laboratory for undertaking fundamental research on the relationship between climate, evolutionary processes and molecular adaptation. The fragmentation of Gondwana and the development of wide-scale glaciation have resulted in major episodes of extinction and vicariance, as well as driving adaptation to an extreme environment. On shorter time-scales, glacial cycles have resulted in shifts in distribution, range fragmentation and allopatric speciation, and the Antarctic Peninsula is currently experiencing among the most rapid climatic warming on the planet. The recent revolution in molecular techniques has provided a suite of innovative and powerful tools to explore the consequences of these changes, and these are now providing novel insights into evolutionary and ecological processes in Antarctica. In addition, the increasing use of remotely sensed data is providing a large-scale view of the system that allows these processes to be set in a wider spatial context. In these two volumes, we collect a wide range of papers exploring these themes, concentrating on recent advances and emphasizing the importance of spatial and temporal scale in understanding ecological and evolutionary processes in Antarctica.


Subject(s)
Adaptation, Biological/genetics , Biological Evolution , Ecosystem , Greenhouse Effect , Antarctic Regions
SELECTION OF CITATIONS
SEARCH DETAIL
...