Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 342(1): 214-21, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22518023

ABSTRACT

Cocaine addiction is a significant and complex disease. Part of this complexity is caused by the variability of the drug experience early in drug use (initial responsiveness, amount of use, etc.). In rats, individual differences in initial cocaine responsiveness and cocaine self-administration history both predict the development of cocaine sensitization, a putative mechanism contributing to the development of cocaine addiction. Here, we sought to determine the role of these factors and cocaine dose on the development of sensitization to cocaine's motivational effects during the earliest stages of self-administration. Rats were classified as either low or high cocaine responders (LCRs or HCRs, respectively) based on acute cocaine-induced locomotor activity (10 mg/kg i.p.) before learning to self-administer cocaine (0.6 mg/kg/infusion i.v.) under a fixed ratio 1 (FR1) schedule of reinforcement. After acquisition, rats self-administered cocaine (0.6 or 1.2 mg/kg/infusion) under a progressive ratio (PR) schedule of reinforcement either immediately or after an additional five FR1 sessions (0.6 or 1.2 mg/kg/infusion). No LCR/HCR differences in sensitization were observed. However, regardless of LCR/HCR classification, exposure to the higher dose of cocaine produced sensitization to cocaine's motivational effects on the PR schedule (i.e., increased break points) and an escalation of consumption on the FR schedule. Thus, our results reveal a novel model for studying escalation and sensitization very early after acquisition and suggest that sensitization may be important in the earliest stages of the cocaine addiction process.


Subject(s)
Cocaine-Related Disorders/etiology , Cocaine/administration & dosage , Motivation/drug effects , Motor Activity/drug effects , Animals , Individuality , Male , Rats , Rats, Sprague-Dawley , Reinforcement Schedule , Reinforcement, Psychology , Self Administration/methods
2.
Psychopharmacology (Berl) ; 219(4): 1089-97, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21863236

ABSTRACT

RATIONALE: We have previously described a model in which adult outbred male Sprague-Dawley rats are classified as either low or high cocaine responders (LCRs or HCRs, respectively) based on acute cocaine-induced open-field activation. This model revealed important individual differences in cocaine's effects, including that LCRs exhibited greater responding than HCRs on a progressive ratio schedule of cocaine reinforcement. However, no LCR/HCR differences in acquisition of cocaine self-administration (0.25 mg/kg/12 s infusion) were observed under these conditions. OBJECTIVES: To determine if LCRs and HCRs differ in the effectiveness of cocaine to function as a reinforcer under a broader range of conditions, the present study assessed the acquisition of cocaine self-administration (fixed ratio 1 schedule of reinforcement) as a function of i.v. cocaine dose (0.1875, 0.375, 0.5, 1, or 1.5 mg/kg/6 s infusion). RESULTS: LCRs and HCRs did not differ significantly on any measure of acquisition examined, including the day to meet acquisition criterion, percent acquired, and cocaine intake. The effect of dose on percent acquired and rate of acquisition peaked at the 1-mg/kg/infusion dose of cocaine. In contrast, the effect of dose on cocaine intake was linear, with the highest rate of intake occurring at the 1.5-mg/kg/infusion dose of cocaine. CONCLUSIONS: LCRs and HCRs do not appear to differ in their acquisition of cocaine-reinforced operant responding across a range of cocaine doses, including conditions that lead to high levels of cocaine intake.


Subject(s)
Cocaine/pharmacology , Conditioning, Operant/drug effects , Motor Activity/drug effects , Animals , Cocaine/administration & dosage , Dose-Response Relationship, Drug , Infusions, Intravenous , Male , Rats , Rats, Sprague-Dawley , Reinforcement Schedule , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...