Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(12): e0208439, 2018.
Article in English | MEDLINE | ID: mdl-30521576

ABSTRACT

Since higher vertical stiffness is related to superior athletic performance, training has traditionally been aimed at augmenting this variable to enhance neuromuscular output. However, research has linked elevated stiffness with increased injury risk, therefore, this study examined the effect of a novel training intervention on vertical stiffness and athletic performance. Vertical stiffness, jump performance and athletic performance were assessed in two randomly allocated groups, prior to, and following, an eight-week period. One group was exposed to a training intervention involving aqua-based plyometrics (n = 11) over the 8 weeks while the other acted as a control group (n = 9). The training intervention involved hopping, jumping and bounding in water at a depth of 1.2m whilst control participants performed their normal training. There were no significant changes in vertical stiffness in either group. Countermovement jump height and peak power significantly increased within the aqua plyometric group (p < 0.05). Athletic performance markers improved in the aqua plyometric group as measured using an agility and a 5-bound test exhibiting superior values at the post-test (p < 0.05). The results suggest that an aqua plyometric training program can enhance athletic performance without elevating stiffness. The increase in athletic performance is likely due to a reduction in ground reaction forces created by the buoyancy of the water, causing a shorter amortization phase and a more rapid application of concentric force. The findings from this study can inform exercise professionals and medical staff regarding the ability to enhance neuromuscular performance without elevating vertical stiffness. This has implications for improving athletic performance while concurrently minimising injury risk.


Subject(s)
Athletic Performance/physiology , Plyometric Exercise/methods , Water Sports/physiology , Adult , Humans , Male , Physical Conditioning, Human , Random Allocation , Young Adult
2.
J Strength Cond Res ; 30(8): 2129-37, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26808858

ABSTRACT

Johnston, RJ, Watsford, ML, Austin, D, Pine, MJ, and Spurrs, RW. Movement profiles, match events, and performance in Australian football. J Strength Cond Res 30(8): 2129-2137, 2016-This study examined the relationship between movement demands, match events, and match performance in professional Australian football. Data were collected from 19 players using global positioning system units during 2 Australian Football League seasons. A range of movement demands and instantaneous power measures were collected. The players were divided into high-caliber (HC, ≥17/20) and low-caliber (LC, ≤8/20) groups based on the rating score by their coaches. A Mann-Whitney U-test, independent samples t-test, and effect sizes were used to determine whether any differences existed between the 2 groups. The HC group had a significantly higher match duration (7.2%), higher total distance (9.6%), and covered more distance and spent more time high-speed running per minute (12.7 and 11.9%). Although not significant, the effect sizes revealed that the HC group tended to have a higher mean metabolic power output (2.6%) and spent more time at the high power zone (7.9%). For the match event data, the HC group had significantly more involvements with the football. The results demonstrated the higher physical demands placed on the HC group. The findings suggest that analyzing instantaneous power measures can provide valuable information about the physical demands placed on team sport athletes to coaches and conditioning staff.


Subject(s)
Athletic Performance/physiology , Football/physiology , Movement/physiology , Adult , Australia , Energy Metabolism/physiology , Geographic Information Systems , Humans , Male , Retrospective Studies , Running/physiology , Young Adult
3.
J Strength Cond Res ; 29(10): 2738-44, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26402474

ABSTRACT

This study examined the differences in movement demands and metabolic power output of elite and subelite Australian football (AF) players and quantified the movement profiles of a subelite AF competition. Movement variables were collected from AF players using Global Positioning System devices over 2 AF League (elite) and North East Australian Football League (NEAFL, subelite) seasons. A total of 500 files were collected from 37 elite and subelite nomadic AF players. NEAFL players covered 13,547 m at an average speed of 124.5 m·min(-1). Elite players performed more high-speed running (5.7-6.3%) and high acceleration and deceleration efforts (1.9-14.7%, p ≤ 0.05). The elite players had a higher mean metabolic power output (3.2%) and time spent at the very high power zone (15.9%, p ≤ 0.05). In contrast, elite players recorded a lower total match duration than the subelite players (4%, p ≤ 0.05). The contrasting amount of high-intensity activities performed by the 2 groups demonstrates the need to alter the training programs of subelite players to ensure they are capable of meeting the demands of elite football. The differences in match duration suggest that reducing subelite players' match time through increasing their rotations would assist the replication of movement profiles of elite players.


Subject(s)
Athletic Performance/physiology , Energy Metabolism/physiology , Football/physiology , Australia , Humans , Male , Physical Exertion/physiology , Young Adult
4.
J Strength Cond Res ; 29(7): 2026-33, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25559909

ABSTRACT

This study aimed to determine whether a relationship existed between movement demands, match events, and perceptual match load, as determined by rating of perceived exertion (RPE) in professional Australian footballers. The movement variables were collected between 1 and 22 times using global positioning system units from 21 players during the 2011 and 2012 Australian Football League seasons. A range of movement demands and match events were collected to obtain a complete insight into the physical demands and work rates of these athletes. These data were separated into the high-load (HL, ≥9) and low-load (LL, ≤8) RPE groups. A Mann-Whitney U-test, independent samples t-test, and effect sizes were used to determine whether any differences existed between the 2 groups and the size of the difference. The results revealed that the HL groups covered more distance, spent more time, and produced more efforts at the high deceleration zone (2.4-6.7%). Further, the HL group had more possessions and disposals of the football than the LL group (9.2-29.6%). The findings have highlighted the importance of monitoring accelerations, decelerations, and instantaneous power outputs to obtain a comprehensive insight into the physical demands placed on team sport athletes. Furthermore, the results demonstrate that training sessions should involve a focus on drills that are composed of both skill development and physical stimulus element.


Subject(s)
Football/physiology , Movement/physiology , Physical Exertion/physiology , Acceleration , Adult , Athletic Performance/physiology , Australia , Deceleration , Geographic Information Systems , Humans , Male , Muscle Fatigue , Perception
5.
J Strength Cond Res ; 28(6): 1649-55, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24276300

ABSTRACT

The purpose of this study was to assess the validity and interunit reliability of 10 Hz (Catapult) and 15 Hz (GPSports) Global Positioning System (GPS) units and investigate the differences between these units as measures of team sport athlete movement demands. A team sport simulation circuit was completed by 8 trained male participants. The movement demands examined included: total distance covered (TD), average peak speed, and the distance covered, time spent, and the number of efforts performed low-speed running (0.00-13.99 km · h(-1)), high-speed running (14.00-19.99 km · h(-1)), and very high-speed running (>20.00 km · h(-1)). The degree of difference between the 10 Hz and the 15 Hz GPS units and validity was assessed using a paired samples t-test. Pearson's correlations were also used for validity assessment. Interunit reliability was established using percentage typical error of measurement (%TEM) and intraclass correlations. The findings revealed that 10 Hz GPS units were a valid (p > 0.05) and reliable (%TEM = 1.3%) measure of TD. In contrast, the 15 Hz GPS units exhibited lower validity for TD and average peak speed. Further, as the speed of movement increased the level of error for the 10 Hz and 15 Hz GPS units increased (%TEM = 0.8-19.9). The findings from this study suggest that comparisons should not be undertaken between 10 Hz and 15 Hz GPS units. In general, the 10 Hz GPS units measured movement demands with greater validity and interunit reliability than the 15 Hz units, however, both 10 Hz and 15 Hz units provided the improved measures of movement demands in comparison to 1 Hz and 5 Hz GPS units.


Subject(s)
Athletic Performance/physiology , Geographic Information Systems/instrumentation , Movement/physiology , Adult , Humans , Male , Pilot Projects , Reproducibility of Results
6.
J Strength Cond Res ; 27(7): 1775-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-22996026

ABSTRACT

Leg stiffness (Kleg) is an important component to consider in both performance and injury in the Australian Football League (AFL). Kleg has not yet been examined longitudinally throughout an entire AFL season. A unilateral hop test was used to measure Kleg in the left and right legs of 25 professional AFL players (24.9 ± 4.3 years, 86.8 ± 8.1 kg, 187.0 ± 7.3 cm). Kleg was assessed at least once per month for each participant. Furthermore, the session rate of perceived exertion method was used to quantify the average weekly training loads experienced by the participants. One-way analysis of variance revealed no significant difference between the average monthly bilateral Kleg scores; however, average weekly training loads varied between 1,400 and 2,000 AU, depending on the training period. Thirteen participants were randomly selected to perform hop tests on 2 consecutive weeks. Reliability tests revealed these measurements to have a typical error of the measurement of 4.15% and an intraclass correlation of 0.8, proving the methods to be reliable. Although training intensity appears to vary, Kleg does not fluctuate significantly across an entire AFL season, suggesting that weekly training loads between 1,400 and 2,000 AU may be prescribed without the risk of fluctuating stiffness levels.


Subject(s)
Leg/physiopathology , Muscle Tonus/physiology , Seasons , Athletic Injuries/physiopathology , Australia , Body Mass Index , Exercise Test , Football/injuries , Football/physiology , Humans , Leg Injuries/physiopathology , Male , Young Adult
7.
J Strength Cond Res ; 26(3): 758-65, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22310508

ABSTRACT

The purpose of this research was to investigate the validity and the reliability of 5-Hz MinimaxX global positioning system (GPS) units measuring athlete movement demands. A team sport simulation circuit (files collected from each unit = 12) and flying 50-m sprints (files collected from each unit = 34) were undertaken, during which the total distance covered; peak speed; player load; the distance covered; time spent and number of efforts performed walking, jogging, running, high-speed running, and sprinting were examined. Movement demands were also separately categorized into low-intensity activity, high-intensity running, and very high-intensity running. The results revealed that GPS was a valid and reliable measure of total distance covered (p > 0.05, percentage typical error of measurement [%TEM] < 5%) and peak speed (p > 0.05, %TEM 5-10%). Further, GPS was found to be a reliable measure of player load (%TEM 4.9%) and the distance covered, time spent, and number of efforts performed at certain velocity zones (%TEM <5% to >10%). The level of GPS error was found to increase along with the velocity of exercise. The findings demonstrated that GPS is capable of measuring movement demands performed at velocities <20 km·h(-1), whereas more caution is to be exercised when analyzing movement demands collected by using GPS velocities >20 km·h(-1).


Subject(s)
Geographic Information Systems , Movement , Sports , Adult , Geographic Information Systems/instrumentation , Geographic Information Systems/standards , Humans , Male , Movement/physiology , Physical Exertion/physiology , Reproducibility of Results , Running/physiology , Running/standards , Sports/physiology , Sports/standards , Walking/physiology , Walking/standards
8.
J Sports Sci ; 30(1): 71-8, 2012.
Article in English | MEDLINE | ID: mdl-22117105

ABSTRACT

Leg stiffness is a modifiable mechanical property that may be related to soft tissue injury risk. The purpose of this study was to examine mean leg stiffness and bilateral differences in leg stiffness across an entire professional Australian Football League (AFL) season, and determine whether this parameter was related to the incidence of lower body soft tissue injury. The stiffness of the left and right legs of 39 professional AFL players (age 24.4 ± 4.4 years, body mass 87.4 ± 8.1 kg, stature 1.87 ± 0.07 m) was measured using a unilateral hopping test at least once per month throughout the season. Injury data were obtained directly from the head medical officer at the football club. Mean leg stiffness and bilateral differences in leg stiffness were compared between the injured and non-injured players. There was no difference between the season mean leg stiffness values for the injured (219.3 ± 16.1 N x m(-1) x kg(-1)) and non-injured (217.4 ± 14.9 N x m(-1) x kg(-1); P = 0.721) groups. The injured group (7.5 ± 3.0%) recorded a significantly higher season mean bilateral difference in leg stiffness than the non-injured group (5.5 ± 1.3%; P = 0.05). A relatively high bilateral difference in leg stiffness appears to be related to the incidence of soft tissue injury in Australian football players. This information is of particular importance to medical and conditioning staff across a variety of sports.


Subject(s)
Athletic Injuries/epidemiology , Football/injuries , Leg/physiology , Lower Extremity/injuries , Soft Tissue Injuries/epidemiology , Adult , Australia/epidemiology , Body Mass Index , Exercise Test , Football/physiology , Humans , Incidence , Leg Injuries/epidemiology , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...