Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35449718

ABSTRACT

Significant sensitivity improvements have been achieved by utilizing high temperature superconducting (HTS) resonators in nuclear magnetic resonance (NMR) probes. Many nuclei such as 13C benefit from strong excitation fields which cannot be produced by traditional HTS resonator designs. We investigate the use of double-sided, counter-wound multi-arm spiral HTS resonators with the aim of increasing the excitation field at the required nuclear Larmor frequency for 13C. When compared to double-sided, counter-wound spiral resonators with similar geometry, simulations indicate that the multi-arm spiral version develops a more uniform current distribution. Preliminary tests of a two-arm resonator indicate that it may produce a stronger excitation field.

2.
Article in English | MEDLINE | ID: mdl-33867781

ABSTRACT

Nuclear magnetic resonance (NMR) probes using thin-film high temperature superconducting (HTS) resonators offer high sensitivity and are particularly suitable for small-sample applications. We are developing an improved 1.5 mm HTS NMR probe designed for operation at 14.1 T and optimized for 13C detection. The total sample volume is about 35 µL and the active sample volume is 20 µL. The probe employs HTS resonators for 13C and 1H transmission and detection and the 2H lock. We examine the interactions of multiple superconducting resonators and normal metal tuning loops on coil resonance frequency and probe sensitivity. We test a recently introduced 13C resonator design, engineered to significantly increase 13C detection sensitivity over previous all-HTS probes. At zero field, we observe a 13C quality factor of 6000 which is several times higher than previous resonators. In this work the coil design considerations and probe build-out procedure are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...