Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Pharm Sci ; 113(7): 1987-1995, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38615815

ABSTRACT

Accurate measurement of non-specific binding of a drug candidate to human liver microsomes (HLM) can be critical for the accurate determination of key enzyme kinetic parameters such as Michaelis-Menton (Km), reversible inhibition (Ki), or inactivation (KI) constants. Several methods have been developed to determine non-specific binding of small molecules to HLM, such as rapid equilibrium dialysis (RED), ultrafiltration (UF), HLM bound to magnetizable beads (HLM-beads), ultracentrifugation (UC), the linear extrapolation stability assay (LESA), and the Transil™ system. Despite various differences in methodology between these methods, it is generally presumed that similar free fraction values (fu,mic) should be generated. To evaluate this hypothesis, a test set of 9 compounds were selected, representing low (high fu,mic value) and significant (low fu,mic value) HLM binding, respectively, across HLM concentrations tested in this manuscript. The fu,mic values were determined using a single compound concentration (1.0 µM) and three HLM concentrations (0.025, 0.50, and 1.0 mg/mL). When the HLM non-specific binding event is not extensive resulting in high fu,mic values, all methods generated similar fu,mic values. However, fu,mic values varied markedly across assay formats when high binding to HLM occurred, where fu,mic values differed by up to 33-fold depending on the method used. Potential causes for such discrepancies across the various methods employed, practical implications related to conduct the different assays, and implications to clinical drug-drug interaction (DDI) predictions are discussed.


Subject(s)
Microsomes, Liver , Ultrafiltration , Humans , Microsomes, Liver/metabolism , Ultrafiltration/methods , Protein Binding , Kinetics , Ultracentrifugation/methods , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/chemistry , Dialysis/methods
2.
Clin Transl Sci ; 17(3): e13746, 2024 03.
Article in English | MEDLINE | ID: mdl-38501263

ABSTRACT

Aminobenzotriazole (ABT) is commonly used as a non-selective inhibitor of cytochrome P450 (CYP) enzymes to assign contributions of CYP versus non-CYP pathways to the metabolism of new chemical entities. Despite widespread use, a systematic review of the drug-drug interaction (DDI) potential for ABT has not been published nor have the implications for using it in plated hepatocyte models for low clearance reaction phenotyping. The goal being to investigate the utility of ABT as a pan-CYP inhibitor for reaction phenotyping of low clearance compounds by evaluating stability over the incubation period, inhibition potential against UGT and sulfotransferase enzymes, and interaction with nuclear receptors involved in the regulation of drug metabolizing enzymes and transporters. Induction potential for additional inhibitors used to ascribe fraction metabolism (fm ), pathway including erythromycin, ketoconazole, azamulin, atipamezole, ZY12201, and quinidine was also investigated. ABT significantly inhibited the clearance of a non-selective UGT substrate 4-methylumbelliferone, with several UGTs shown to be inhibited using selective probe substrates in human hepatocytes and rUGTs. The inhibitors screened in the induction assay were shown to induce enzymes regulated through Aryl Hydrocarbon Receptor, Constitutive Androstane Receptor, and Pregnane X Receptor. Lastly, a case study identifying the mechanisms of a clinical DDI between Palbociclib and ARV-471 is provided as an example of the potential consequences of using ABT to derive fm . This work demonstrates that ABT is not an ideal pan-CYP inhibitor for reaction phenotyping of low clearance compounds and establishes a workflow that can be used to enable robust characterization of other prospective inhibitors.


Subject(s)
Cytochrome P-450 Enzyme System , Hepatocytes , Humans , Cytochrome P-450 Enzyme System/metabolism , Hepatocytes/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism
3.
Pharm Res ; 40(8): 1901-1913, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37280472

ABSTRACT

PURPOSE: After single oral dosing of the glycine reuptake transporter (GlyT1) inhibitor, iclepertin (BI 425809), a single major circulating metabolite, M530a, was identified. However, upon multiple dosing, a second major metabolite, M232, was observed with exposure levels ~ twofold higher than M530a. Studies were conducted to characterize the metabolic pathways and enzymes responsible for formation of both major human metabolites. METHODS: In vitro studies were conducted with human and recombinant enzyme sources and enzyme-selective inhibitors. The production of iclepertin metabolites was monitored by LC-MS/MS. RESULTS: Iclepertin undergoes rapid oxidation to a putative carbinolamide that spontaneously opens to an aldehyde, M528, which then undergoes reduction by carbonyl reductase to the primary alcohol, M530a. However, the carbinolamide can also undergo a much slower oxidation by CYP3A to form an unstable imide metabolite, M526, that is subsequently hydrolyzed by a plasma amidase to form M232. This difference in rate of metabolism of the carbinolamine explains why high levels of the M232 metabolite were not observed in vitro and in single dose studies in humans, but were observed in longer-term multiple dose studies. CONCLUSIONS: The long half-life iclepertin metabolite M232 is formed from a common carbinolamine intermediate, that is also a precursor of M530a. However, the formation of M232 occurs much more slowly, likely contributing to its extensive exposure in vivo. These results highlight the need to employ adequate clinical study sampling periods and rigorous characterization of unexpected metabolites, especially when such metabolites are categorized as major, thus requiring safety assessment.


Subject(s)
Enzyme Inhibitors , Tandem Mass Spectrometry , Humans , Chromatography, Liquid , Half-Life , Enzyme Inhibitors/metabolism , Metabolic Networks and Pathways , Microsomes, Liver/metabolism
4.
Shock ; 58(3): 217-223, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35959777

ABSTRACT

ABSTRACT: Introduction: Neutrophil extracellular traps (NETs) trigger thrombin generation. We aimed to characterize the effects of deoxyribonuclease (DNAse) on NET components (cell-free DNA [cfDNA] and histones) and thrombin generation after trauma. Methods: Citrated plasma samples were collected from trauma patients and healthy volunteers. Thrombin generation (calibrated automated thrombogram) was measured as lag time (LT, in minutes), peak height (in nM), and time to peak thrombin generation (in minutes). Citrullinated histone 3 (CitH3) and 4 (CitH4) were measured by enzyme-linked immunosorbent assay; cfDNA by PicoGreen (all in nanograms per milliliter). Samples analyzed +/- DNAse (1,000 U/mL). Results expressed as median and quartiles [Q1, Q3], Wilcoxon testing, P < 0.05 significant. Results: We enrolled 46 patients (age, 48 [31, 67] years; 67% male) and 21 volunteers (age, 45 [28, 53] years; 43% male). Deoxyribonuclease treatment of trauma plasma led to shorter LT (3.11 [2.67, 3.52] min; 2.93 [2.67, 3.19] min), shorter time to peak thrombin generation (6.00 [5.30, 6.67] min; 5.48 [5.00, 6.00] min), greater peak height (273.7 [230.7, 300.5] nM; 288.7 [257.6, 319.2] nM), decreased cfDNA (576.9 [503.3, 803.1] ng/mL; 456.0 [393.5, 626.7] ng/mL), decreased CitH3 (4.54 [2.23, 10.01] ng/mL; 3.59 [1.93, 7.98] ng/mL), and increased H4 (1.30 [0.64, 6.36] ng/mL; 1.75 [0.83, 9.67] ng/mL), all P < 0.001. The effect of DNAse was greater on trauma patients as compared with volunteers for LT (ΔLT, -0.21 vs. -0.02 min, P = 0.007), cfDNA (ΔcfDNA -133.4 vs. -84.9 ng/mL, P < 0.001), and CitH3 (ΔCitH3, -0.65 vs. -0.11 ng/mL, P = 0.004). Conclusion: Deoxyribonuclease treatment accelerates thrombin generation kinetics in trauma patient samples as compared with healthy volunteers. These findings suggest that NETs may contribute to the hypercoagulable state observed in trauma patients.


Subject(s)
Cell-Free Nucleic Acids , Extracellular Traps , Deoxyribonucleases , Extracellular Traps/metabolism , Female , Histones , Humans , Male , Middle Aged , Neutrophils/metabolism , Solubility , Thrombin/metabolism
5.
Drug Metab Dispos ; 50(2): 114-127, 2022 02.
Article in English | MEDLINE | ID: mdl-34789487

ABSTRACT

Inactivation of Cytochrome P450 (CYP450) enzymes can lead to significant increases in exposure of comedicants. The majority of reported in vitro to in vivo extrapolation (IVIVE) data have historically focused on CYP3A, leaving the assessment of other CYP isoforms insubstantial. To this end, the utility of human hepatocytes (HHEP) and human liver microsomes (HLM) to predict clinically relevant drug-drug interactions was investigated with a focus on CYP1A2, CYP2C8, CYP2C9, CYP2C19, and CYP2D6. Evaluation of IVIVE for CYP2B6 was limited to only weak inhibition. A search of the University of Washington Drug-Drug Interaction Database was conducted to identify a clinically relevant weak, moderate, and strong inhibitor for selective substrates of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and CYP2D6, resulting in 18 inhibitors for in vitro characterization against 119 clinical interaction studies. Pooled human hepatocytes and HLM were preincubated with increasing concentrations of inhibitors for designated timepoints. Time dependent inhibition was detected in HLM for four moderate/strong inhibitors, suggesting that some optimization of incubation conditions (i.e., lower protein concentrations) is needed to capture weak inhibition. Clinical risk assessment was conducted by incorporating the in vitro derived kinetic parameters maximal rate of enzyme inactivation (min-1) (kinact) and concentration of inhibitor resulting in 50% of the maximum enzyme inactivation (KI) into static equations recommended by regulatory authorities. Significant overprediction was observed when applying the basic models recommended by regulatory agencies. Mechanistic static models, which consider the fraction of metabolism through the impacted enzyme, using the unbound hepatic inlet concentration lead to the best overall prediction accuracy with 92% and 85% of data from HHEPs and HLM, respectively, within twofold of the observed value. SIGNIFICANCE STATEMENT: Coupling time-dependent inactivation parameters derived from pooled human hepatocytes and human liver microsomes (HLM) with a mechanistic static model provides an easy and quantitatively accurate means to determine clinical drug-drug interaction risk from in vitro data. Optimization is needed to evaluate time-dependent inhibition (TDI) for weak and moderate inhibitors using HLM. Recommendations are made with respect to input parameters for in vitro to in vivo extrapolation (IVIVE) of TDI with non-CYP3A enzymes using available data from HLM and human hepatocytes.


Subject(s)
Cytochrome P-450 CYP2D6 , Microsomes, Liver , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2C8 , Cytochrome P-450 CYP2C9 , Cytochrome P-450 CYP2D6/metabolism , Hepatocytes/metabolism , Humans , Microsomes, Liver/metabolism
6.
Drug Metab Dispos ; 49(12): 1056-1062, 2021 12.
Article in English | MEDLINE | ID: mdl-34561223

ABSTRACT

In early drug development, drug-drug interaction risk is routinely assessed using human liver microsomes (HLMs). Nonspecific binding of drugs to HLMs can affect the determination of accurate enzyme parameters (Km, Ki, KI). Previously, we described a novel in vitro model consisting of HLMs bound to magnetizable beads [HLM-magnetizable-beads system (HLM-beads)]. The HLM-beads enable rapid separation of HLMs from incubation media by applying a magnetic field. Here, HLM-beads were further characterized and evaluated as a tool to assess HLM nonspecific binding of small molecules. The free fractions (fu,mic) of 13 compounds (chosen based on their pKa values) were determined using HLM-beads under three HLM concentrations (0.025, 0.50, and 1.0 mg/ml) and compared with those determined by equilibrium dialysis. Most fu,mic values obtained using HLM-beads were within 0.5- to 2-fold of the values determined using equilibrium dialysis. The highest fold difference were observed for high binders itraconazole and BIRT2584 (1.9- to 2.9-fold), as the pronounced adsorption of these compounds to the equilibrium dialysis apparatus interfered with their fu,mic determination. Correlation and linear regression analysis of the fu,mic values generated using HLM-beads and equilibrium dialysis was conducted. Overall, a good correlation of fu,mic values obtained by the two methods were observed, as the r and R2 values from correlational analysis and linear regression analysis were >0.9 and >0.89, respectively. These studies demonstrate that HLM-beads can produce comparable fu,mic values as determined by equilibrium dialysis while reducing the time required for this type of study from hours to only 10 minutes and compound apparatus adsorption. SIGNIFICANCE STATEMENT: This work introduces a new method of rapidly assessing nonspecific microsomal binding using human liver microsomes bound to magnetizable beads.


Subject(s)
Drug Development/methods , Drug Interactions , Magnetic Fields , Metabolic Clearance Rate , Microsomes, Liver , Protein Binding , Binding Sites , Enzyme Inhibitors/pharmacokinetics , Humans , Microsomes, Liver/chemistry , Microsomes, Liver/physiology , Reproducibility of Results , Risk Assessment/methods
7.
Mol Cell ; 81(8): 1749-1765.e8, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33657400

ABSTRACT

Acetylation of lysine 16 on histone H4 (H4K16ac) is catalyzed by histone acetyltransferase KAT8 and can prevent chromatin compaction in vitro. Although extensively studied in Drosophila, the functions of H4K16ac and two KAT8-containing protein complexes (NSL and MSL) are not well understood in mammals. Here, we demonstrate a surprising complex-dependent activity of KAT8: it catalyzes H4K5ac and H4K8ac as part of the NSL complex, whereas it catalyzes the bulk of H4K16ac as part of the MSL complex. Furthermore, we show that MSL complex proteins and H4K16ac are not required for cell proliferation and chromatin accessibility, whereas the NSL complex is essential for cell survival, as it stimulates transcription initiation at the promoters of housekeeping genes. In summary, we show that KAT8 switches catalytic activity and function depending on its associated proteins and that, when in the NSL complex, it catalyzes H4K5ac and H4K8ac required for the expression of essential genes.


Subject(s)
Histone Acetyltransferases/genetics , Homeostasis/genetics , Transcription, Genetic/genetics , Acetylation , Animals , Cell Line , Cell Line, Tumor , Cell Nucleus/genetics , Cell Proliferation/genetics , Chromatin/genetics , HEK293 Cells , HeLa Cells , Histones/genetics , Humans , K562 Cells , Lysine/genetics , Male , Mice , Promoter Regions, Genetic/genetics , THP-1 Cells
8.
Shock ; 56(3): 433-439, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33534396

ABSTRACT

BACKGROUND: Damage-associated molecular patterns (DAMPs) stimulate endothelial syndecan-1 shedding and neutrophil extracellular traps (NET) formation. The role of NETs in trauma and trauma-induced hypercoagulability is unknown. We hypothesized that trauma patients with accelerated thrombin generation would have increased NETosis and syndecan-1 levels. METHODS: In this pilot study, we analyzed 50 citrated plasma samples from 30 trauma patients at 0 h (n = 22) and 6 h (n = 28) from time of injury (TOI) and 21 samples from healthy volunteers, for a total of 71 samples included in analysis. Thrombin generation was quantified using calibrated automated thrombogram (CAT) and reported as lag time (LT), peak height (PH), and time to peak (ttPeak). Nucleosome calibrated (H3NUC) and free histone standardized (H3Free) ELISAs were used to quantify NETs. Syndecan-1 levels were quantified by ELISA. Results are presented as median [interquartile range] and Spearman rank correlations. RESULTS: Plasma levels of H3NUC were increased in trauma patients as compared with healthy volunteers both at 0 h (89.8 ng/mL [35.4, 180.3]; 18.1 ng/mL [7.8, 37.4], P = 0.002) and at 6 h (86.5 ng/mL [19.2, 612.6]; 18.1 ng/mL [7.8, 37.4], P = 0.003) from TOI. H3Free levels were increased in trauma patients at 0 h (5.74 ng/mL [3.19, 8.76]; 1.61 ng/mL [0.66, 3.50], P = 0.002) and 6 h (5.52 ng/mL [1.46, 11.37]; 1.61 ng/mL [0.66, 3.50], P = 0.006). Syndecan-1 levels were greater in trauma patients (4.53 ng/mL [3.28, 6.28]; 2.40 ng/mL [1.66, 3.20], P < 0.001) only at 6 h from TOI. H3Free and syndecan-1 levels positively correlated both at 0 h (0.376, P = 0.013) and 6 h (0.583, P < 0.001) from TOI. H3NUC levels and syndecan-1 levels were positively correlated at 6 h from TOI (0.293, P = 0.041). TtPeak correlated inversely to H3 NUC (-0.358, P = 0.012) and syndecan-1 levels (-0.298, P = 0.038) at 6 h from TOI. CONCLUSIONS: Our pilot study demonstrates that trauma patients have increased NETosis, measured by H3NUC and H3Free levels, increased syndecan-1 shedding, and accelerated thrombin generation kinetics early after injury.


Subject(s)
Extracellular Traps/physiology , Syndecan-1/blood , Thrombin/metabolism , Wounds and Injuries/blood , Adult , Case-Control Studies , Cohort Studies , Female , Humans , Injury Severity Score , Male , Middle Aged , Pilot Projects , Time Factors , Wounds and Injuries/complications
9.
Methods Mol Biol ; 2261: 323-343, 2021.
Article in English | MEDLINE | ID: mdl-33420999

ABSTRACT

Chromatin immunoprecipitation (ChIP) is a method used to examine the genomic localization of a target of interest (e.g., proteins, protein posttranslational modifications, or DNA elements). As ChIP provides a snapshot of in vivo DNA-protein interactions, it lends insight to the mechanisms of gene expression and genome regulation. This chapter provides a detailed protocol focused on native-ChIP (N-ChIP), a robust approach to profile stable DNA-protein interactions. We also describe best practices for ChIP , including defined controls to ensure specific and efficient target enrichment and methods for data normalization.


Subject(s)
Chromatin Immunoprecipitation , Chromatin/metabolism , DNA/metabolism , Histones/metabolism , Animals , Cells, Cultured , Chromatin/genetics , DNA/genetics , Humans , Protein Binding , Protein Processing, Post-Translational , Workflow
10.
Addict Biol ; 26(1): e12816, 2021 01.
Article in English | MEDLINE | ID: mdl-31373129

ABSTRACT

Epigenetic enzymes oversee long-term changes in gene expression by integrating genetic and environmental cues. While there are hundreds of enzymes that control histone and DNA modifications, their potential roles in substance abuse and alcohol dependence remain underexplored. A few recent studies have suggested that epigenetic processes could underlie transcriptomic and behavioral hallmarks of alcohol addiction. In the present study, we sought to identify epigenetic enzymes in the brain that are dysregulated during protracted abstinence as a consequence of chronic and intermittent alcohol exposure. Through quantitative mRNA expression analysis of over 100 epigenetic enzymes, we identified 11 that are significantly altered in alcohol-dependent rats compared with controls. Follow-up studies of one of these enzymes, the histone demethylase KDM6B, showed that this enzyme exhibits region-specific dysregulation in the prefrontal cortex and nucleus accumbens of alcohol-dependent rats. KDM6B was also upregulated in the human alcoholic brain. Upregulation of KDM6B protein in alcohol-dependent rats was accompanied by a decrease of trimethylation levels at histone H3, lysine 27 (H3K27me3), consistent with the known demethylase specificity of KDM6B. Subsequent epigenetic (chromatin immunoprecipitation [ChIP]-sequencing) analysis showed that alcohol-induced changes in H3K27me3 were significantly enriched at genes in the IL-6 signaling pathway, consistent with the well-characterized role of KDM6B in modulation of inflammatory responses. Knockdown of KDM6B in cultured microglial cells diminished IL-6 induction in response to an inflammatory stimulus. Our findings implicate a novel KDM6B-mediated epigenetic signaling pathway integrated with inflammatory signaling pathways that are known to underlie the development of alcohol addiction.


Subject(s)
Alcoholism/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Animals , Cells, Cultured , Epigenesis, Genetic , Ethanol/metabolism , Histone Demethylases/genetics , Histones/metabolism , Humans , Prefrontal Cortex/metabolism , Rats , Signal Transduction , Up-Regulation
11.
Thromb Update ; 5: 100090, 2021 Dec.
Article in English | MEDLINE | ID: mdl-38620680

ABSTRACT

Background: COVID-19-associated coagulopathy is incompletely understood. Objectives: To characterize thrombin generation, Von Willebrand Factor (VWF), neutrophil extracellular traps (NETs), and their role in COVID-19 risk stratification in the emergency department (ED). Patients/methods: Plasma samples from 67 ED COVID-19 patients were compared to 38 healthy volunteers (HVs). Thrombin generation (calibrated automated thrombogram, CAT) was expressed as lag time (LT, min), peak height (PH, min), and time to peak (ttPeak, min). Citrullinated nucleosomes and histones were quantified with ELISA, VWF antigen and activity (IU/dL) through latex immunoassay, Factor VIII (IU/dL) through one-stage optical clot detection, and VWF multimers with Western blot densitometry. Wilcoxon testing and multivariable logistic regression were performed. Results presented as median [Q1, Q3]; p < 0.05 significant. Results: COVID-19 patients had longer LT (4.00 [3.26, 4.67]; 2.95 [2.67, 3.10], p < 0.001) and ttPeak (7.33 [6.33, 8.04]; 6.45 [6.00, 7.50], p = 0.004), greater VWF antigen (212 [158, 275]; 110 [91, 128], p < 0.001) and Factor VIII levels (148 [106, 190]; 106 [86, 129], p < 0.001), with decreased high molecular weight multimers (Normalized multimer ratio 0.807 [0.759, 0.869]; 0.891 [0.858, 0.966], p < 0.001), than HVs. COVID-19 patients requiring admission from the ED had longer LT and ttPeak with greater VWF antigen and Factor VIII levels than those not admitted. Two and three variable models of CAT parameters and VWF correlated with COVID-19 and admission status (C-statistics 0.677 to 0.922). Conclusions: Thrombin generation kinetics and VWF levels, independent of NETs, may have a role in predicting admission need for COVID-19 patients.

12.
J Thromb Haemost ; 18(10): 2732-2743, 2020 10.
Article in English | MEDLINE | ID: mdl-32654410

ABSTRACT

BACKGROUND: Recent data propose a diagnostic and prognostic capacity for citrullinated histone H3 (H3Cit), a marker of neutrophil extracellular traps (NETs), in pathologic conditions such as cancer and thrombosis. However, current research is hampered by lack of standardized assays. OBJECTIVES: We aimed to develop an assay to reliably quantify nucleosomal H3Cit in human plasma. METHODS: We assessed the common practice of in vitro enzymatically modified histone H3 as calibration standards and the specificity of available intrapeptidyl citrulline antibodies. Based on our findings, we developed and validated a novel assay to quantify nucleosomal H3Cit in human plasma. RESULTS: We show that enzymatically citrullinated H3 proteins are compromised by high enzyme-dependent lot variability as well as instability in plasma. We furthermore demonstrate that the majority of commercially available antibodies against intrapeptidyl citrulline display poor specificity for their reported target when tested against a panel of semi-synthetic nucleosomes containing distinct histone H3 citrullinations. Finally, we present a novel assay utilizing highly specific monoclonal antibodies and semi-synthetic nucleosomes containing citrulline in place of arginine at histone H3, arginine residues 2, 8, and 17 (H3R2,8,17Cit) as calibration standards. Rigorous validation of this assay shows its capacity to accurately and reliably quantify nucleosomal H3Cit levels in human plasma with clear elevations in cancer patients compared to healthy individuals. CONCLUSIONS: Our novel approach using defined nucleosome controls enables reliable quantification of H3Cit in human plasma. This assay will be broadly applicable to study the role of histone citrullination in disease and its utility as a biomarker.


Subject(s)
Extracellular Traps , Histones , Biological Assay , Humans , Nucleosomes , Plasma , Protein Processing, Post-Translational
13.
Mol Cell ; 72(1): 162-177.e7, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30244833

ABSTRACT

Histone post-translational modifications (PTMs) are important genomic regulators often studied by chromatin immunoprecipitation (ChIP), whereby their locations and relative abundance are inferred by antibody capture of nucleosomes and associated DNA. However, the specificity of antibodies within these experiments has not been systematically studied. Here, we use histone peptide arrays and internally calibrated ChIP (ICeChIP) to characterize 52 commercial antibodies purported to distinguish the H3K4 methylforms (me1, me2, and me3, with each ascribed distinct biological functions). We find that many widely used antibodies poorly distinguish the methylforms and that high- and low-specificity reagents can yield dramatically different biological interpretations, resulting in substantial divergence from the literature for numerous H3K4 methylform paradigms. Using ICeChIP, we also discern quantitative relationships between enhancer H3K4 methylation and promoter transcriptional output and can measure global PTM abundance changes. Our results illustrate how poor antibody specificity contributes to the "reproducibility crisis," demonstrating the need for rigorous, platform-appropriate validation.


Subject(s)
Antibodies/genetics , Chromatin Immunoprecipitation/methods , Heterochromatin/genetics , Histones/genetics , Antibodies/chemistry , Antibodies/immunology , Antibody Specificity , Heterochromatin/chemistry , Heterochromatin/immunology , Histone Code/genetics , Histones/chemistry , Histones/immunology , Humans , Methylation , Nucleosomes/genetics , Promoter Regions, Genetic/genetics , Protein Processing, Post-Translational/genetics
14.
Proc Natl Acad Sci U S A ; 115(35): 8775-8780, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30104358

ABSTRACT

Mitotic inheritance of DNA methylation patterns is facilitated by UHRF1, a DNA- and histone-binding E3 ubiquitin ligase that helps recruit the maintenance DNA methyltransferase DNMT1 to replicating chromatin. The DNA methylation maintenance function of UHRF1 is dependent on its ability to bind chromatin, where it facilitates monoubiquitination of histone H3 at lysines 18 and 23, a docking site for DNMT1. Because of technical limitations, this model of UHRF1-dependent DNA methylation inheritance has been constructed largely based on genetics and biochemical observations querying methylated DNA oligonucleotides, synthetic histone peptides, and heterogeneous chromatin extracted from cells. Here, we construct semisynthetic mononucleosomes harboring defined histone and DNA modifications and perform rigorous analysis of UHRF1 binding and enzymatic activity with these reagents. We show that multivalent engagement of nucleosomal linker DNA and dimethylated lysine 9 on histone H3 directs UHRF1 ubiquitin ligase activity toward histone substrates. Notably, we reveal a molecular switch, stimulated by recognition of hemimethylated DNA, which redirects UHRF1 ubiquitin ligase activity away from histones in favor of robust autoubiquitination. Our studies support a noncompetitive model for UHRF1 and DNMT1 chromatin recruitment to replicating chromatin and define a role for hemimethylated linker DNA as a regulator of UHRF1 ubiquitin ligase substrate selectivity.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Chromatin , DNA Methylation , Histones , Models, Biological , Ubiquitination , CCAAT-Enhancer-Binding Proteins/chemistry , CCAAT-Enhancer-Binding Proteins/metabolism , Chromatin/chemistry , Chromatin/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/chemistry , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Histones/chemistry , Histones/metabolism , Humans , Substrate Specificity , Ubiquitin-Protein Ligases
15.
Neurobiol Dis ; 119: 149-158, 2018 11.
Article in English | MEDLINE | ID: mdl-30099093

ABSTRACT

BACKGROUND: With the capacity to modulate gene networks in an environmentally-sensitive manner, the role of epigenetic systems in mental disorders has come under intense investigation. Dysregulation of epigenetic effectors, including microRNAs and histone-modifying enzymes, may better explain the role of environmental risk factors and the observed heritability rate that cannot be fully attributed to known genetic risk alleles. Here, we aimed to identify novel epigenetic targets of the schizophrenia-associated microRNA 132 (miR-132). METHODS: Histone modifications were quantified by immunodetection in response to viral-mediated overexpression of miR-132 while a luminescent reporter system was used to validate targets of miR-132 in vitro. Genome-wide profiling, quantitative PCR and NanoSting were used to quantify gene expression in post-mortem human brains, neuronal cultures and prefrontal cortex (PFC) of mice chronically exposed to antipsychotics. Following viral-mediated depletion of Enhancer of Zeste 1 (EZH1) in the murine PFC, behaviors including sociability and motivation were assessed using a 3-chambered apparatus and forced-swim test, respectively. RESULTS: Overexpression of miR-132 decreased global histone 3 lysine 27 tri-methylation (H3K27me3), a repressive epigenetic mark. Moreover, the polycomb-associated H3K27 methyltransferase, EZH1, is regulated by miR-132 and upregulated in the PFC of schizophrenics. Unlike its homolog EZH2, expression of EZH1 in the murine PFC decreased following chronic exposure to antipsychotics. Viral-mediated depletion of EZH1 in the mouse PFC attenuated sociability, enhanced motivational behaviors, and affected gene expression pathways related to neurotransmission and behavioral phenotypes. CONCLUSIONS: EZH1 is dysregulated in schizophrenia, sensitive to antipsychotic medications, and a brain-enriched miR-132 target that controls neurobehavioral phenotypes.


Subject(s)
Antipsychotic Agents/therapeutic use , Epigenesis, Genetic/physiology , Motivation/physiology , Polycomb Repressive Complex 2/biosynthesis , Schizophrenia/metabolism , Social Behavior , Adult , Aged , Animals , Antipsychotic Agents/pharmacology , Cell Line, Tumor , Cohort Studies , Epigenesis, Genetic/drug effects , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Motivation/drug effects , Polycomb Repressive Complex 2/genetics , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Schizophrenia/drug therapy , Schizophrenia/genetics
16.
J Am Heart Assoc ; 5(12)2016 12 22.
Article in English | MEDLINE | ID: mdl-28007739

ABSTRACT

BACKGROUND: Ischemic preconditioning (IPC) protects the heart from prolonged ischemic insult and reperfusion injury through a poorly understood mechanism. Post-translational modifications of histone residues can confer rapid and drastic switches in gene expression in response to various stimuli, including ischemia. The aim of this study was to investigate the effect of histone methylation in the response to cardiac ischemic preconditioning. METHODS AND RESULTS: We used cardiac biopsies from mice subjected to IPC to quantify global levels of 3 of the most well-studied histone methylation marks (H3K9me2, H3K27me3, and H3K4me3) with Western blot and found that H3K9me2 levels were significantly increased in the area at risk compared to remote myocardium. In order to assess which genes were affected by the increase in H3K9me2 levels, we performed ChIP-Seq and transcriptome profiling using microarray. Two hundred thirty-seven genes were both transcriptionally repressed and enriched in H3K9me2 in the area at risk of IPC mice. Of these, Mtor (Mechanistic target of rapamycin) was chosen for mechanistic studies. Knockdown of the major H3K9 methyltransferase G9a resulted in a significant decrease in H3K9me2 levels across Mtor, increased Mtor expression, as well as decreased autophagic activity in response to rapamycin and serum starvation. CONCLUSIONS: IPC confers an increase of H3K9me2 levels throughout the Mtor gene-a master regulator of cellular metabolism and a key player in the cardioprotective effect of IPC-leading to transcriptional repression via the methyltransferase G9a. The results of this study indicate that G9a has an important role in regulating cardiac autophagy and the cardioprotective effect of IPC.


Subject(s)
Autophagy/genetics , Epigenetic Repression , Histone Code/genetics , Histone-Lysine N-Methyltransferase/metabolism , Ischemic Preconditioning, Myocardial , TOR Serine-Threonine Kinases/genetics , Animals , Blotting, Western , Chromatin Immunoprecipitation , Epigenesis, Genetic , Methylation , Mice , Real-Time Polymerase Chain Reaction
17.
Drug Metab Dispos ; 44(3): 466-75, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26684498

ABSTRACT

The drug-drug interaction (DDI) potential of deleobuvir, an hepatitis C virus (HCV) polymerase inhibitor, and its two major metabolites, CD 6168 (formed via reduction by gut bacteria) and deleobuvir-acyl glucuronide (AG), was assessed in vitro. Area-under-the-curve (AUC) ratios (AUCi/AUC) were predicted using a static model and compared with actual AUC ratios for probe substrates in a P450 cocktail of caffeine (CYP1A2), tolbutamide (CYP2C9), and midazolam (CYP3A4), administered before and after 8 days of deleobuvir administration to HCV-infected patients. In vitro studies assessed inhibition, inactivation and induction of P450s. Induction was assessed in a short-incubation (10 hours) hepatocyte assay, validated using positive controls, to circumvent cytotoxicity seen with deleobuvir and its metabolites. Overall, P450 isoforms were differentially affected by deleobuvir and its two metabolites. Of note was more potent CYP2C8 inactivation by deleobuvir-AG than deleobuvir and P450 induction by CD 6168 but not by deleobuvir. The predicted net AUC ratios for probe substrates were 2.92 (CYP1A2), 0.45 (CYP2C9), and 0.97 (CYP3A4) compared with clinically observed ratios of 1.64 (CYP1A2), 0.86 (CYP2C9), and 1.23 (CYP3A4). Predictions of DDI using deleobuvir alone would have significantly over-predicted the DDI potential for CYP3A4 inhibition (AUC ratio of 6.15). Including metabolite data brought the predicted net effect close to the observed DDI. However, the static model over-predicted the induction of CYP2C9 and inhibition/inactivation of CYP1A2. This multiple-perpetrator DDI scenario highlights the application of the static model for predicting complex DDI for CYP3A4 and exemplifies the importance of including key metabolites in an overall DDI assessment.


Subject(s)
Acrylates/metabolism , Benzimidazoles/metabolism , Drug Interactions/physiology , Area Under Curve , Cytochrome P-450 CYP3A Inhibitors/metabolism , Cytochrome P-450 Enzyme System/metabolism , Female , Hepatocytes/metabolism , Humans , Male
18.
Exp Neurol ; 271: 241-50, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26099177

ABSTRACT

A hexanucleotide repeat expansion residing within the C9ORF72 gene represents the most common known cause of amyotrophic lateral sclerosis (ALS) and places the disease among a growing family of repeat expansion disorders. The presence of RNA foci, repeat-associated translation products, and sequestration of RNA binding proteins suggests that toxic RNA gain-of-function contributes to pathology while C9ORF72 haploinsufficiency may be an additional pathological factor. One viable therapeutic strategy for treating expansion diseases is the use of small molecule inhibitors of epigenetic modifier proteins to reactivate expanded genetic loci. Indeed, previous studies have established proof of this principle by increasing the drug-induced expression of expanded (and abnormally heterochromatinized) FMR1, FXN and C9ORF72 genes in respective patient cells. While epigenetic modifier proteins are increasingly recognized as druggable targets, there have been few screening strategies to address this avenue of drug discovery in the context of expansion diseases. Here we utilize a semi-high-throughput gene expression based screen to identify siRNAs and small molecule inhibitors of epigenetic modifier proteins that regulate C9ORF72 RNA in patient fibroblasts, lymphocytes and reprogrammed motor neurons. We found that several bromodomain small molecule inhibitors increase the expression of C9ORF72 mRNA and pre-mRNA without affecting repressive epigenetic signatures of expanded C9ORF72 alleles. These data suggest that bromodomain inhibition increases the expression of unexpanded C9ORF72 alleles and may therefore compensate for haploinsufficiency without increasing the production of toxic RNA and protein products, thereby conferring therapeutic value.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Lymphocytes/metabolism , Proteins/genetics , Adenosine Triphosphate , Benzodiazepines/pharmacology , C9orf72 Protein , Cell Cycle/drug effects , Cell Line, Transformed , DNA Methylation/drug effects , DNA Methylation/genetics , Deoxycytidine/pharmacology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Gene Library , Humans , Lymphocytes/drug effects , Mutation/genetics , Neurons/drug effects , Neurons/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Transfection
19.
Int J Oncol ; 47(2): 465-72, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26094604

ABSTRACT

Metastatic chondrosarcoma of mesenchymal origin is the second most common bone malignancy and does not respond either to chemotherapy or radiation; therefore, the search for new therapies is relevant and urgent. We described recently that tumor growth inhibiting cytostatic proline-rich polypeptide 1, (PRP-1) significantly upregulated tumor suppressor miRNAs, downregulated onco-miRNAs in human chondrosarcoma JJ012 cell line, compared to chondrocytes culture. In this study we hypothesized the existence and regulation of a functional marker in cancer stem cells, correlated to peptides antiproliferative activity. Experimental results indicated that among significantly downregulated miRNA after PRP-1treatment was miRNAs 302c*. This miRNA is a part of the cluster miR302­367, which is stemness regulator in human embryonic stem cells and in certain tumors, but is not expressed in adult hMSCs and normal tissues. PRP-1 had strong inhibitory effect on viability of chondrosarcoma and multilineage induced multipotent adult cells (embryonic primitive cell type). Unlike chondrosarcoma, in glioblastoma, PRP-1 does not have any inhibitory activity on cell proliferation, because in glioblastoma miR-302-367 cluster plays an opposite role, its expression is sufficient to suppress the stemness inducing properties. The observed correlation between the antiproliferative activity of PRP-1 and its action on downregulation of miR302c explains the peptides opposite effects on the upregulation of proliferation of adult mesenchymal stem cells, and the inhibition of the proliferation of human bone giant-cell tumor stromal cells, reported earlier. PRP-1 substantially downregulated the miR302c targets, the stemness markers Nanog, c-Myc and polycomb protein Bmi-1. miR302c expression is induced by JMJD2-mediated H3K9me2 demethylase activity in its promoter region. JMJD2 was reported to be a positive regulator for Nanog. Our experimental results proved that PRP-1 strongly inhibited H3K9 activity comprised of a pool of JMJD1 and JMJD2. We conclude that inhibition of H3K9 activity by PRP-1 leads to downregulation of miR302c and its targets, defining the PRP-1 antiproliferative role.


Subject(s)
Antineoplastic Agents/pharmacology , Bone Neoplasms/genetics , Chondrosarcoma/genetics , Genetic Markers/genetics , MicroRNAs/genetics , Peptides/pharmacology , Antimicrobial Cationic Peptides , Bone Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chondrosarcoma/drug therapy , Down-Regulation , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/drug therapy , Glioblastoma/genetics , Humans , Neoplastic Stem Cells/drug effects
20.
Drug Metab Dispos ; 43(10): 1612-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26068924

ABSTRACT

Deleobuvir is a potent inhibitor of the hepatitis C virus nonstructural protein 5B polymerase. In humans, deleobuvir underwent extensive reduction to form CD 6168. This metabolite was not formed in vitro in aerobic incubations with human liver microsomes or cytosol. Anaerobic incubations of deleobuvir with rat and human fecal homogenates produced CD 6168. Using these in vitro formation rates, a retrospective analysis was conducted to assess whether the fecal formation of CD 6168 could account for the in vivo levels of this metabolite. The formation of CD 6168 was also investigated using a pseudo-germ free (pGF) rat model, in which gut microbiota were largely eradicated by antibiotic treatment. Plasma exposure (area under the curve from 0 to ∞) of CD 6168 was approximately 9-fold lower in pGF rats (146 ± 64 ng·h/ml) compared with control rats (1,312 ± 649 ng·h/ml). Similarly, in pGF rats, lower levels of CD 6168 (1.5% of the deleobuvir dose) were excreted in feces compared with control rats (42% of the deleobuvir dose). In agreement with these findings, in pGF rats, approximately all of the deleobuvir dose was excreted as deleobuvir into feces (105% of dose), whereas only 26% of the deleobuvir dose was excreted as deleobuvir in control rats. These differences in plasma and excretion profiles between pGF and control rats confirm the role of gut bacteria in the formation of CD 6168. These results underline the importance of evaluating metabolism by gut bacteria and highlight experimental approaches for nonclinical assessment of bacterial metabolism in drug development.


Subject(s)
Acrylates/metabolism , Benzimidazoles/metabolism , Gastrointestinal Microbiome/physiology , Microsomes, Liver/metabolism , Acrylates/pharmacology , Animals , Benzimidazoles/pharmacology , Cross-Over Studies , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Humans , Male , Microsomes, Liver/drug effects , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...