Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Ecol Appl ; : e2983, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840517

ABSTRACT

Understanding the factors influencing species range limits is increasingly crucial in anticipating migrations due to human-caused climate change. In the boreal biome, ongoing climate change and the associated increases in the rate, size, and severity of disturbances may alter the distributions of boreal tree species. Notably, Interior Alaska lacks native pine, a biogeographical anomaly that carries implications for ecosystem structure and function. The current range of lodgepole pine (Pinus contorta var. latifolia) in the adjacent Yukon Territory may expand into Interior Alaska, particularly with human assistance. Evaluating the potential for pine expansion in Alaska requires testing constraints on range limits such as dispersal limitations, environmental tolerance limits, and positive or negative biotic interactions. In this study, we used field experiments with pine seeds and transplanted seedlings, complemented by model simulations, to assess the abiotic and biotic factors influencing lodgepole pine seedling establishment and growth after fire in Interior Alaska. We found that pine could successfully recruit, survive, grow, and reproduce across our broadly distributed network of experimental sites. Our results show that both mammalian herbivory and competition from native tree species are unlikely to constrain pine growth and that environmental conditions commonly found in Interior Alaska fall well within the tolerance limits for pine. If dispersal constraints are released, lodgepole pine could have a geographically expansive range in Alaska, and once established, its growth is sufficient to support pine-dominated stands. Given the impacts of lodgepole pine on ecosystem processes such as increases in timber production, carbon sequestration, landscape flammability, and reduced forage quality, natural or human-assisted migration of this species is likely to substantially alter responses of Alaskan forest ecosystems to climate change.

2.
Ann Bot ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592408

ABSTRACT

BACKGROUND AND AIMS: Stand-replacing crown fires are the most prevalent type of fire regime in boreal forests in North America. However, a substantial proportion of low-severity fires are found within fire perimeters. Here we aimed to investigate the effects of low-severity fires on the reproductive potential and seedling recruitment in boreal forests stands in between stand-replacing fire events. METHODS: We recorded site and tree characteristics from 149 trees within twelve sites dominated by mature black spruce [Picea mariana (Mill.) B.S.P.] trees in the Northwest Territories, Canada. The presence of fire-scarred trees supported classification of sites as unburned or affected by low-severity fires in recent history. We used non-parametric tests to evaluate differences in site conditions between unburned and low-severity sites, and mixed effect models to evaluate differences in tree age, size, and reproductive traits among unburned trees and trees from low-severity sites. KEY RESULTS: Results showed significantly higher density of dead black spruce trees in low-severity sites, and marginally significant higher presence of permafrost. Trees from low-severity fire sites were significantly older, exhibited significantly lower tree growth, and showed a tendency towards a higher probability of cone presence and percentage of open cones compared to trees from unburned sites. Surviving fire-scarred trees affected by more recent low-severity fires showed a tendency towards higher probability of cone presence and cone production. Density of black spruce seedlings significantly increased with recent low-severity fires. CONCLUSIONS: Trees in low-severity sites appeared to have escaped mortality from up to three fires, as indicated by fire scar records and their older ages. Shallow permafrost at low-severity sites may cause lower flammability, allowing areas to act as fire refugia. Low-severity surface fires temporarily enhanced the reproductive capacity of surviving trees and the density of seedlings, likely as a stress response to the fire event.

3.
Nat Plants ; 9(7): 1044-1056, 2023 07.
Article in English | MEDLINE | ID: mdl-37386149

ABSTRACT

The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.


Subject(s)
Reproduction , Trees , Fertility , Seeds , Satiation
4.
Ecosystems ; 26(3): 473-490, 2023.
Article in English | MEDLINE | ID: mdl-37179797

ABSTRACT

Resilience of plant communities to disturbance is supported by multiple mechanisms, including ecological legacies affecting propagule availability, species' environmental tolerances, and biotic interactions. Understanding the relative importance of these mechanisms for plant community resilience supports predictions of where and how resilience will be altered with disturbance. We tested mechanisms underlying resilience of forests dominated by black spruce (Picea mariana) to fire disturbance across a heterogeneous forest landscape in the Northwest Territories, Canada. We combined surveys of naturally regenerating seedlings at 219 burned plots with experimental manipulations of ecological legacies via seed addition of four tree species and vertebrate exclosures to limit granivory and herbivory at 30 plots varying in moisture and fire severity. Black spruce recovery was greatest where it dominated pre-fire, at wet sites with deep residual soil organic layers, and fire conditions of low soil or canopy combustion and longer return intervals. Experimental addition of seed indicated all species were seed-limited, emphasizing the importance of propagule legacies. Black spruce and birch (Betula papyrifera) recruitment were enhanced with vertebrate exclusion. Our combination of observational and experimental studies demonstrates black spruce is vulnerable to effects of increased fire activity that erode ecological legacies. Moreover, black spruce relies on wet areas with deep soil organic layers where other species are less competitive. However, other species can colonize these areas if enough seed is available or soil moisture is altered by climate change. Testing mechanisms underlying species' resilience to disturbance aids predictions of where vegetation will transform with effects of climate change. Supplementary Information: The online version contains supplementary material available at 10.1007/s10021-022-00772-7.

5.
Nat Commun ; 13(1): 2381, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501313

ABSTRACT

The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.


Subject(s)
Forests , Seeds , Fertility , Reproduction , Seeds/physiology , Trees
6.
Ecol Lett ; 25(6): 1471-1482, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35460530

ABSTRACT

Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.


Subject(s)
Forests , Trees , Biodiversity , Climate , Fertility , Seeds
7.
Glob Chang Biol ; 28(9): 3066-3082, 2022 05.
Article in English | MEDLINE | ID: mdl-35170154

ABSTRACT

Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics.


Aún existen importantes vacíos en la comprensión de la respuesta reproductiva de las plantas al cambio medioambiental, en parte, porque su monitoreo en especies de plantas longevas requiere una observación directa durante muchos años, y estos conjuntos de datos rara vez han estado disponibles. Aquí presentamos a MASTREE +, una base de datos que recopila series de tiempo de la reproducción de las plantas de todo el planeta, poniendo a disposición estos datos de libre acceso para la comunidad científica. MASTREE + incluye 73.828 puntos de observación de la reproducción anual georreferenciados (ej. conteos de semillas y frutos) en poblaciones de plantas perennes en todo el mundo. Estas observaciones consisten en 5971 series temporales a nivel de población provenientes de 974 especies en 66 países. La mediana de la duración de las series de tiempo es de 10 años (media = 12.4 años) y el conjunto de datos incluye 1.122 series de al menos dos décadas (≥20 años de observaciones). Para un subconjunto de especies bien estudiadas, MASTREE +incluye un amplio conjunto de series temporales replicadas en gradientes geográficos y climáticos. Describimos el conjunto de datos de acceso abierto disponible como un archivo.csv y presentamos una aplicación web asociada para la exploración de datos. MASTREE+ proporcionará la base para mejorar la comprensión sobre la respuesta reproductiva de plantas longevas al cambio medioambiental. Además, MASTREE+ facilitará los avances en la investigación de la ecología y la evolución de las estrategias reproductivas en plantas perennes y el papel de la reproducción vegetal como determinante de la dinámica de ecosistemas.


Subject(s)
Ecosystem , Reproduction , Ecology , Plants , Seeds/physiology
8.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-34983867

ABSTRACT

Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.


Subject(s)
Climate Change , Trees/physiology , Ecosystem , Fertility/physiology , Geography , North America , Uncertainty
9.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34697246

ABSTRACT

Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene. However, with climate change and more frequent and severe fires, shifts away from black spruce dominance to broadleaf or pine species are emerging, with implications for ecosystem functions including carbon sequestration, water and energy fluxes, and wildlife habitat. Here, we predict that such reductions in black spruce after fire may already be widespread given current trends in climate and fire. To test this, we synthesize data from 1,538 field sites across boreal North America to evaluate compositional changes in tree species following 58 recent fires (1989 to 2014). While black spruce was resilient following most fires (62%), loss of resilience was common, and spruce regeneration failed completely in 18% of 1,140 black spruce sites. In contrast, postfire regeneration never failed in forests dominated by jack pine, which also possesses an aerial seed bank, or broad-leaved trees. More complete combustion of the soil organic layer, which often occurs in better-drained landscape positions and in dryer duff, promoted compositional changes throughout boreal North America. Forests in western North America, however, were more vulnerable to change due to greater long-term climate moisture deficits. While we find considerable remaining resilience in black spruce forests, predicted increases in climate moisture deficits and fire activity will erode this resilience, pushing the system toward a tipping point that has not been crossed in several thousand years.


Subject(s)
Climate Change , Picea , Taiga , Wildfires , North America
10.
PLoS One ; 16(10): e0258558, 2021.
Article in English | MEDLINE | ID: mdl-34710129

ABSTRACT

Wildfire frequency and extent is increasing throughout the boreal forest-tundra ecotone as climate warms. Understanding the impacts of wildfire throughout this ecotone is required to make predictions of the rate and magnitude of changes in boreal-tundra landcover, its future flammability, and associated feedbacks to the global carbon (C) cycle and climate. We studied 48 sites spanning a gradient from tundra to low-density spruce stands that were burned in an extensive 2013 wildfire on the north slope of the Alaska Range in Denali National Park and Preserve, central Alaska. We assessed wildfire severity and C emissions, and determined the impacts of severity on understory vegetation composition, conifer tree recruitment, and active layer thickness (ALT). We also assessed conifer seed rain and used a seeding experiment to determine factors controlling post-fire tree regeneration. We found that an average of 2.18 ± 1.13 Kg C m-2 was emitted from this fire, almost 95% of which came from burning of the organic soil. On average, burn depth of the organic soil was 10.6 ± 4.5 cm and both burn depth and total C combusted increased with pre-fire conifer density. Sites with higher pre-fire conifer density were also located at warmer and drier landscape positions and associated with increased ALT post-fire, greater changes in pre- and post-fire understory vegetation communities, and higher post-fire boreal tree recruitment. Our seed rain observations and seeding experiment indicate that the recruitment potential of conifer trees is limited by seed availability in this forest-tundra ecotone. We conclude that the expected climate-induced forest infilling (i.e. increased density) at the forest-tundra ecotone could increase fire severity, but this infilling is unlikely to occur without increases in the availability of viable seed.


Subject(s)
Ecosystem , Wildfires , Tracheophyta
11.
Science ; 372(6539): 280-283, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33859032

ABSTRACT

In boreal forests, climate warming is shifting the wildfire disturbance regime to more frequent fires that burn more deeply into organic soils, releasing sequestered carbon to the atmosphere. To understand the destabilization of carbon storage, it is necessary to consider these effects in the context of long-term ecological change. In Alaskan boreal forests, we found that shifts in dominant plant species catalyzed by severe fire compensated for greater combustion of soil carbon over decadal time scales. Severe burning of organic soils shifted tree dominance from slow-growing black spruce to fast-growing deciduous broadleaf trees, resulting in a net increase in carbon storage by a factor of 5 over the disturbance cycle. Reduced fire activity in future deciduous-dominated boreal forests could increase the tenure of this carbon on the landscape, thereby mitigating the feedback to climate warming.

13.
Nat Commun ; 12(1): 1242, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33623042

ABSTRACT

Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.


Subject(s)
Climate Change , Trees/physiology , Fertility/physiology , Geography , Models, Theoretical , North America , Seasons
14.
Glob Chang Biol ; 26(11): 6062-6079, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32529727

ABSTRACT

Boreal wildfires are increasing in intensity, extent, and frequency, potentially intensifying carbon emissions and transitioning the region from a globally significant carbon sink to a source. The productive southern boreal forests of central Canada already experience relatively high frequencies of fire, and as such may serve as an analog of future carbon dynamics for more northern forests. Fire-carbon dynamics in southern boreal systems are relatively understudied, with limited investigation into the drivers of pre-fire carbon stocks or subsequent combustion. As part of NASA's Arctic-Boreal Vulnerability Experiment, we sampled 79 stands (47 burned, 32 unburned) throughout central Saskatchewan to characterize above- and belowground carbon stocks and combustion rates in relation to historical land use, vegetation characteristics, and geophysical attributes. We found southern boreal forests emitted an average of 3.3 ± 1.1 kg C/m2 from field sites. The emissions from southern boreal stands varied as a function of stand age, fire weather conditions, ecozone, and soil moisture class. Sites affected by historical timber harvesting had greater combustion rates due to faster carbon stock recovery rates than sites recovering from wildfire events, indicating that different boreal forest land use practices can generate divergent carbon legacy effects. We estimate the 2015 fire season in Saskatchewan emitted a total of 36.3 ± 15.0 Tg C, emphasizing the importance of southern boreal fires for regional carbon budgets. Using the southern boreal as an analog, the northern boreal may undergo fundamental shifts in forest structure and carbon dynamics, becoming dominated by stands <70 years old that hold 2-7 kg C/m2 less than current mature northern boreal stands. Our latitudinal approach reinforces previous studies showing that northern boreal stands are at a high risk of holding less carbon under changing disturbance conditions.


Subject(s)
Fires , Wildfires , Arctic Regions , Carbon/analysis , Forests , Saskatchewan , Taiga
15.
New Phytol ; 227(5): 1335-1349, 2020 09.
Article in English | MEDLINE | ID: mdl-32299141

ABSTRACT

Nitrogen (N2 )-fixing moss microbial communities play key roles in nitrogen cycling of boreal forests. Forest type and leaf litter inputs regulate moss abundance, but how they control moss microbiomes and N2 -fixation remains understudied. We examined the impacts of forest type and broadleaf litter on microbial community composition and N2 -fixation rates of Hylocomium splendens and Pleurozium schreberi. We conducted a moss transplant and leaf litter manipulation experiment at three sites with paired paper birch (Betula neoalaskana) and black spruce (Picea mariana) stands in Alaska. We characterized bacterial communities using marker gene sequencing, determined N2 -fixation rates using stable isotopes (15 N2 ) and measured environmental covariates. Mosses native to and transplanted into spruce stands supported generally higher N2 -fixation and distinct microbial communities compared to similar treatments in birch stands. High leaf litter inputs shifted microbial community composition for both moss species and reduced N2 -fixation rates for H. splendens, which had the highest rates. N2 -fixation was positively associated with several bacterial taxa, including cyanobacteria. The moss microbiome and environmental conditions controlled N2 -fixation at the stand and transplant scales. Predicted shifts from spruce- to deciduous-dominated stands will interact with the relative abundances of mosses supporting different microbiomes and N2 -fixation rates, which could affect stand-level N inputs.


Subject(s)
Bryophyta , Microbiota , Alaska , Nitrogen/analysis , Nitrogen Fixation , Plant Leaves/chemistry , Trees
16.
Article in English | MEDLINE | ID: mdl-32153310

ABSTRACT

Field studies in ecology often make use of data collected in a hierarchical fashion, and may combine studies that vary in sampling design. For example, studies of tree recruitment after disturbance may use counts of individual seedlings from plots that vary in spatial arrangement and sampling density. To account for the multi-level design and the fact that more than a few plots usually yield no individuals, a mixed effects zero inflated Poisson model is often adopted. Although it is a convenient modeling strategy, various aspects of the model could be misspecified. A comprehensive test procedure, based on the cumulative sum of the residuals, is proposed. The test is proven to be consistent, and its convergence properties are established as well. The application of the proposed test is illustrated by a real data example and simulation studies.

17.
Ann Vasc Surg ; 62: 35-44, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31201971

ABSTRACT

BACKGROUND: Iliac branch devices (IBDs) can treat iliac and aortoiliac aneurysms (AIAs) less invasively than open surgery (OS) and preserve pelvic perfusion. Our hypothesis was that the rates of perioperative complications after treatment for AIAs are similar between IBDs and hypogastric occlusion with coil and cover (C&C), and lower than OS. METHODS: We identified patients undergoing elective AIA repair by IBD, C&C, and OS (all with infrarenal clamps) within the National Surgical Quality Improvement Program (NSQIP) vascular aneurysm specific Participant User Files (2012-2016). Baseline characteristics, procedural variables, and 30-day outcomes were compared. The primary outcomes were any major complication or death. Secondary outcomes included minor complications, total operative time, total and intensive care unit length of stay (LOS), and reinterventions. Multivariable logistic regression assessed differences in major complications between IBD and C&C/OS after adjusting for patient and procedural variables. RESULTS: We identified 593 patients (83% men, mean age 71.6 ± 9 years) undergoing elective AIA repair (IBD = 283, C&C = 118, and OS = 192). Patient age and American Society of Anesthesiology (ASA) classification varied significantly between groups. Mean aneurysm diameter was higher for OS and similar between IBD and C&C (5.9 cm vs. 5.5 cm and 5.2 cm, respectively, P < 0.001). OS was associated with higher rate of major complications (65.5% vs. IBD: 8.8% and C&C: 13.6%, P=<0.001) and higher mortality (3.6% vs. IBD: 0.7% and C&C: 0%, P = 0.017). Minor complications and reinterventions were similar. IBD patients had significantly shorter total operative time and total and intensive care unit LOS. After adjustment, OS was associated with higher major complications compared with IBD (Odds ratio [OR]: 11.3, 95% confidence interval [CI]: 5.8-21.9, P < 0.001), primarily because of the use of transfusions (major complications excluding transfusions OR: 1.3, 95% CI: 0.6-2.8, P = 0.52). Major complications between IBD and C&C were similar (OR: 1.6, 95% CI: 0.8-3.4, P = 0.23). CONCLUSIONS: The use of IBDs for elective treatment of AIAs is associated with favorable perioperative outcomes and a lower rate of major complications compared with OS, primarily because of fewer transfusions. IBDs use has perioperative outcomes similar to C&C with the associated benefit of preserving pelvic perfusion. Pending long-term durability results for this technique, IBDs appear to be associated with several perioperative advantages in patients with AIAs compared with OS and C&C.


Subject(s)
Aortic Aneurysm, Abdominal/surgery , Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis , Endovascular Procedures/instrumentation , Iliac Aneurysm/surgery , Pelvis/blood supply , Aged , Aged, 80 and over , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/mortality , Aortic Aneurysm, Abdominal/physiopathology , Blood Vessel Prosthesis Implantation/adverse effects , Blood Vessel Prosthesis Implantation/mortality , Databases, Factual , Elective Surgical Procedures , Embolization, Therapeutic/adverse effects , Embolization, Therapeutic/instrumentation , Embolization, Therapeutic/mortality , Endovascular Procedures/adverse effects , Endovascular Procedures/mortality , Female , Humans , Iliac Aneurysm/diagnostic imaging , Iliac Aneurysm/mortality , Iliac Aneurysm/physiopathology , Male , Middle Aged , Postoperative Complications/etiology , Prosthesis Design , Regional Blood Flow , Retrospective Studies , Risk Assessment , Risk Factors , Time Factors , Treatment Outcome
18.
Glob Chang Biol ; 26(3): 1592-1607, 2020 03.
Article in English | MEDLINE | ID: mdl-31658411

ABSTRACT

Fire is a primary disturbance in boreal forests and generates both positive and negative climate forcings. The influence of fire on surface albedo is a predominantly negative forcing in boreal forests, and one of the strongest overall, due to increased snow exposure in the winter and spring months. Albedo forcings are spatially and temporally heterogeneous and depend on a variety of factors related to soils, topography, climate, land cover/vegetation type, successional dynamics, time since fire, season, and fire severity. However, how these variables interact to influence albedo is not well understood, and quantifying these relationships and predicting postfire albedo becomes increasingly important as the climate changes and management frameworks evolve to consider climate impacts. Here we developed a MODIS-derived 'blue sky' albedo product and a novel machine learning modeling framework to predict fire-driven changes in albedo under historical and future climate scenarios across boreal North America. Converted to radiative forcing (RF), we estimated that fires generate an annual mean cooling of -1.77 ± 1.35 W/m2 from albedo under historical climate conditions (1971-2000) integrated over 70 years postfire. Increasing postfire albedo along a south-north climatic gradient was offset by a nearly opposite gradient in solar insolation, such that large-scale spatial patterns in RF were minimal. Our models suggest that climate change will lead to decreases in mean annual postfire albedo, and hence a decreasing strength of the negative RF, a trend dominated by decreased snow cover in spring months. Considering the range of future climate scenarios and model uncertainties, we estimate that for fires burning in the current era (2016) the cooling effect from long-term postfire albedo will be reduced by 15%-28% due to climate change.


Subject(s)
Climate Change , Fires , North America , Taiga , Trees
19.
Nature ; 572(7770): 520-523, 2019 08.
Article in English | MEDLINE | ID: mdl-31435055

ABSTRACT

Boreal forest fires emit large amounts of carbon into the atmosphere primarily through the combustion of soil organic matter1-3. During each fire, a portion of this soil beneath the burned layer can escape combustion, leading to a net accumulation of carbon in forests over multiple fire events4. Climate warming and drying has led to more severe and frequent forest fires5-7, which threaten to shift the carbon balance of the boreal ecosystem from net accumulation to net loss1, resulting in a positive climate feedback8. This feedback will occur if organic-soil carbon that escaped burning in previous fires, termed 'legacy carbon', combusts. Here we use soil radiocarbon dating to quantitatively assess legacy carbon loss in the 2014 wildfires in the Northwest Territories of Canada2. We found no evidence for the combustion of legacy carbon in forests that were older than the historic fire-return interval of northwestern boreal forests9. In forests that were in dry landscapes and less than 60 years old at the time of the fire, legacy carbon that had escaped burning in the previous fire cycle was combusted. We estimate that 0.34 million hectares of young forests (<60 years) that burned in the 2014 fires could have experienced legacy carbon combustion. This implies a shift to a domain of carbon cycling in which these forests become a net source-instead of a sink-of carbon to the atmosphere over consecutive fires. As boreal wildfires continue to increase in size, frequency and intensity7, the area of young forests that experience legacy carbon combustion will probably increase and have a key role in shifting the boreal carbon balance.


Subject(s)
Carbon Sequestration , Carbon/analysis , Soil/chemistry , Taiga , Wildfires/statistics & numerical data , Atmosphere/chemistry
20.
Ann Vasc Surg ; 60: 76-84.e1, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31220590

ABSTRACT

BACKGROUND: Treatment of common and internal iliac aneurysms is usually done by open surgery. A novel iliac branch endoprosthesis (IBE) is commercially available with encouraging initial results. Our objective is to compare perioperative outcomes of patients with iliac aneurysms treated by open surgery (OS) versus endovascular repair with IBE. METHODS: The study was a retrospective, single-center review of patients who were treated for aortoiliac or isolated common and/or internal iliac artery aneurysms from 2014 to 2017. Patients with connective tissue disorders, infected grafts, or thoracoabdominal aneurysms were excluded. Primary outcomes were perioperative mortality, length of hospital (LOS) and intensive care unit (ICU) stay, estimated blood loss, need for red blood cell transfusion (RBC), and perioperative reinterventions. RESULTS: Sixty-seven patients (96% male) were treated with OS (n = 25, mean age 68 ± 8 years) or IBE (n = 42, mean age 73 ± 8 years; P = 0.02) with 1 symptomatic patient in each group. Perioperative mortality occurred in 1 patient in the OS group (4%), with no mortality in the IBE group (P = 0.37) Total LOS and ICU stay was higher for OS compared to IBE (total stay 7.5 ± 3.4 vs. 1.7 ± 1.4 days for IBE, P < 0.0001 and ICU LOS 3.3 ± 2.1 vs. 0.1 ± 0.4 days, P < 0.0001). Estimated blood loss was higher for patients undergoing OS (4,732 ± 2,540 mL) compared to patients treated with IBE (263 ± 451 mL, P < 0.0001), resulting in higher RBC transfusion requirements (1.5 ± 2.4 vs. 0.2 ± 0.8 units, P = 0.001). Five patients in the OS group had early procedure-related reinterventions, while 2 patients in the IBE group required reintervention for access site complications (20% vs. 4.7%, P = 0.09). CONCLUSIONS: Endovascular repair of iliac aneurysms with IBE is feasible and is associated with lower blood loss, LOS and ICU stay, and had lower RBC transfusion requirements. Cost analysis and long-term follow-up will be needed to define the value of this modality for iliac artery aneurysm repair.


Subject(s)
Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis , Endovascular Procedures/instrumentation , Iliac Aneurysm/surgery , Stents , Aged , Aged, 80 and over , Blood Vessel Prosthesis Implantation/adverse effects , Blood Vessel Prosthesis Implantation/mortality , Endovascular Procedures/adverse effects , Endovascular Procedures/mortality , Female , Humans , Iliac Aneurysm/diagnostic imaging , Iliac Aneurysm/mortality , Male , Middle Aged , Postoperative Complications/mortality , Postoperative Complications/therapy , Prosthesis Design , Retrospective Studies , Risk Factors , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...