Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Nat Food ; 5(1): 72-82, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177223

ABSTRACT

Dietary exposure to methylmercury (MeHg) causes irreversible damage to human cognition and is mitigated by photolysis and microbial demethylation of MeHg. Rice (Oryza sativa L.) has been identified as a major dietary source of MeHg. However, it remains unknown what drives the process within plants for MeHg to make its way from soils to rice and the subsequent human dietary exposure to Hg. Here we report a hidden pathway of MeHg demethylation independent of light and microorganisms in rice plants. This natural pathway is driven by reactive oxygen species generated in vivo, rapidly transforming MeHg to inorganic Hg and then eliminating Hg from plants as gaseous Hg°. MeHg concentrations in rice grains would increase by 2.4- to 4.7-fold without this pathway, which equates to intelligence quotient losses of 0.01-0.51 points per newborn in major rice-consuming countries, corresponding to annual economic losses of US$30.7-84.2 billion globally. This discovered pathway effectively removes Hg from human food webs, playing an important role in exposure mitigation and global Hg cycling.


Subject(s)
Mercury , Methylmercury Compounds , Oryza , Infant, Newborn , Humans , Mercury/metabolism , Oryza/metabolism , Food Chain , Methylmercury Compounds/metabolism , Demethylation
2.
J Hazard Mater ; 445: 130589, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-37055993

ABSTRACT

Over 3000 mercury (Hg)-contaminated sites worldwide contain liquid metallic Hg [Hg(0)l] representing a continuous source of elemental Hg(0) in the environment through volatilization and solubilization in water. Currently, there are few effective treatment technologies available to remove or sequester Hg(0)l in situ. We investigated sonochemical treatments coupled with complexing agents, polysulfide and sulfide, in oxidizing Hg(0)l and stabilizing Hg in water, soil and quartz sand. Results indicate that sonication is highly effective in breaking up and oxidizing liquid Hg(0)l beads via acoustic cavitation, particularly in the presence of polysulfide. Without complexing agents, sonication caused only minor oxidation of Hg(0)l but increased headspace gaseous Hg(0)g and dissolved Hg(0)aq in water. However, the presence of polysulfide essentially stopped Hg(0) volatilization and solubilization. As a charged polymer, polysulfide was more effective than sulfide in oxidizing Hg(0)l and subsequently stabilizing the precipitated metacinnabar (ß-HgS) nanocrystals. Sonochemical treatments with sulfide yielded incomplete oxidation of Hg(0)l, likely resulting from the formation of HgS coatings on the dispersed µm-size Hg(0)l bead surfaces. Sonication with polysulfide also resulted in rapid oxidation of Hg(0)l and precipitation of HgS in quartz sand and in the Hg(0)l-contaminated soil. This research indicates that sonochemical treatment with polysulfide could be an effective means in rapidly converting Hg(0)l to insoluble HgS precipitates in water and sediments, thereby preventing its further emission and release to the environment. We suggest that future studies are performed to confirm its technical feasibility and treatment efficacy for remediation applications.

3.
Environ Sci Process Impacts ; 25(3): 445-460, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36692344

ABSTRACT

At mercury (Hg)-contaminated sites, streambank erosion can act as a main mobilizer of Hg into nearby waterbodies. Once deposited into the waters, mercury from these soils can be transformed to MeHg by microorganisms. It is therefore important to understand the solid-phase speciation of Hg in streambanks as differences in Hg speciation will have implications for Hg transport and bioavailability. In this study, we characterized Hg solid phases in Hg-contaminated soils (100-1100 mg per kg Hg) collected from the incised bank of the East Fork Poplar Creek (EFPC) in Oak Ridge, TN (USA). The analysis of the soil samples by scanning electron microscopy-energy dispersive spectroscopy indicated numerous microenvironments where Hg and sulfur (S) are co-located. According to bulk soil analyses by extended X-ray absorption fine structure spectroscopy (EXAFS), the near-neighbor Hg molecular coordination in the soils closely resembled freshly precipitated Hg sulfide (metacinnabar, HgS); however, EXAFS fits indicated the Hg in the HgS structure was undercoordinated with respect to crystalline metacinnabar. This undercoordination of Hg-S observed by spectroscopy is consistent with transmission electron microspy images showing the presence of nanocrystallites with structural defects (twinning, stacking faults, dislocations) in individual HgS-bearing particles. Although the soils were collected from exposed parts of the stream bank (i.e., open to the atmosphere), the presence of reduced forms of S and sulfate-reducing microbes suggests that biogenic sulfides promote the formation of HgS nanoparticles in these soils. Altogether, these data demonstrate the predominance of nanoparticulate HgS with crystal lattice defects in the bank soils of an industrially impacted stream. Efforts to predict the mobilization and bioavailability of Hg associated with nano-HgS forms should consider the impact of nanocrystalline lattice defects on particle surface reactivity, including Hg dissolution rates and bioavailability on Hg fate and transformations.


Subject(s)
Mercury Compounds , Mercury , Sulfides/chemistry , Mercury/chemistry , Soil
4.
Environ Sci Technol ; 56(8): 4961-4969, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35389633

ABSTRACT

As a major entry point of mercury (Hg) to aquatic food webs, algae play an important role in taking up and transforming Hg species in aquatic ecosystems. However, little is known how and to what extent Hg reduction, uptake, and species transformations are mediated by algal cells and their exudates, algal organic matter (AOM), under either sunlit or dark conditions. Here, using Chlorella vulgaris (CV) as one of the most prevalent freshwater model algal species, we show that solar irradiation could enhance the reduction of mercuric Hg(II) to elemental Hg(0) by both CV cells and AOM. AOM reduced more Hg(II) than algal cells themselves due to cell surface adsorption and uptake of Hg(II) inside the cells under solar irradiation. Synchrotron radiation X-ray absorption near-edge spectroscopy (SR-XANES) analyses indicate that sunlight facilitated the transformation of Hg to less bioavailable species, such as ß-HgS and Hg-phytochelatins, compared to Hg(Cysteine)2-like species formed in algal cells in the dark. These findings highlight important functional roles and potential mechanisms of algae in Hg reduction and immobilization under varying lighting conditions and how these processes may modulate Hg cycling and bioavailability in the aquatic environment.


Subject(s)
Chlorella vulgaris , Mercury , Methylmercury Compounds , Biological Transport , Chlorella vulgaris/metabolism , Ecosystem , Fresh Water , Mercury/chemistry , Methylmercury Compounds/metabolism
5.
Environ Pollut ; 299: 118878, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35085651

ABSTRACT

Arctic tundra soils store a globally significant amount of mercury (Hg), which could be transformed to the neurotoxic methylmercury (MeHg) upon warming and thus poses serious threats to the Arctic ecosystem. However, our knowledge of the biogeochemical drivers of MeHg production is limited in these soils. Using substrate addition (acetate and sulfate) and selective microbial inhibition approaches, we investigated the geochemical drivers and dominant microbial methylators in 60-day microcosm incubations with two tundra soils: a circumneutral fen soil and an acidic bog soil, collected near Nome, Alaska, United States. Results showed that increasing acetate concentration had negligible influences on MeHg production in both soils. However, inhibition of sulfate-reducing bacteria (SRB) completely stalled MeHg production in the fen soil in the first 15 days, whereas addition of sulfate in the low-sulfate bog soil increased MeHg production by 5-fold, suggesting prominent roles of SRB in Hg(II) methylation. Without the addition of sulfate in the bog soil or when sulfate was depleted in the fen soil (after 15 days), both SRB and methanogens contributed to MeHg production. Analysis of microbial community composition confirmed the presence of several phyla known to harbor microorganisms associated with Hg(II) methylation in the soils. The observations suggest that SRB and methanogens were mainly responsible for Hg(II) methylation in these tundra soils, although their relative contributions depended on the availability of sulfate and possibly syntrophic metabolisms between SRB and methanogens.


Subject(s)
Mercury , Methylmercury Compounds , Microbiota , Soil Pollutants , Mercury/analysis , Methylmercury Compounds/analysis , Soil , Soil Pollutants/analysis , Wetlands
6.
J Inorg Biochem ; 223: 111496, 2021 10.
Article in English | MEDLINE | ID: mdl-34271330

ABSTRACT

Methanotrophic bacteria catalyze the aerobic oxidation of methane to methanol using Cu-containing enzymes, thereby exerting a modulating influence on the global methane cycle. To facilitate the acquisition of Cu ions, some methanotrophic bacteria secrete small modified peptides known as "methanobactins," which strongly bind Cu and function as an extracellular Cu recruitment relay, analogous to siderophores and Fe. In addition to Cu, methanobactins form complexes with other late transition metals, including the Group 12 transition metals Zn, Cd, and Hg, although the interplay among solution-phase configurations, metal interactions, and the spectroscopic signatures of methanobactin-metal complexes remains ambiguous. In this study, the complexation of Zn, Cd, and Hg by methanobactin from Methylocystis sp. strain SB2 was studied using a combination of absorbance, fluorescence, extended x-ray absorption fine structure (EXAFS) spectroscopy, and time-dependent density functional theory (TD-DFT) calculations. We report changes in sample absorbance and fluorescence spectral dynamics, which occur on a wide range of experimental timescales and characterize a clear stoichiometric complexation dependence. Mercury L3-edge EXAFS and TD-DFT calculations suggest a linear model for HgS coordination, and TD-DFT suggests a tetrahedral model for Zn2+ and Cd2+. We observed an enhancement in the fluorescence of methanobactin upon interaction with transition metals and propose a mechanism of complexation-hindered isomerization drawing inspiration from the wild-type Green Fluorescent Protein active site. Collectively, our results represent the first combined computational and experimental spectroscopy study of methanobactins and shed new light on molecular interactions and dynamics that characterize complexes of methanobactins with Group 12 transition metals.


Subject(s)
Chelating Agents/chemistry , Coordination Complexes/chemistry , Imidazoles/chemistry , Methylocystaceae/chemistry , Oligopeptides/chemistry , Transition Elements/chemistry , Chelating Agents/radiation effects , Coordination Complexes/radiation effects , Fluorescence , Imidazoles/radiation effects , Light , Metals, Heavy/chemistry , Metals, Heavy/radiation effects , Molecular Structure , Oligopeptides/radiation effects , Spectrometry, Fluorescence , Transition Elements/radiation effects
7.
Environ Sci Pollut Res Int ; 28(18): 22651-22663, 2021 May.
Article in English | MEDLINE | ID: mdl-33420931

ABSTRACT

As a global environmental pollutant, mercury (Hg) threatens our water resources and presents a substantial risk to human health. The rate and extent of immobilization of Hg2+ (hereafter, Hg) on engineered sorbents (Thiol-SAMMS®, pine biochar, SediMite™, Organoclay™ PM-199, and quartz sand as a control) was evaluated using flow-through column experiments. The effectiveness of the sorbents was based on (1) the percentage of Hg removed in relation to the total amount of Hg passing the sorbent column, and (2) the rate of Hg uptake compared to the nonreactive tracer bromide (Br-). All sorbents removed Hg to a certain extent, but none of the sorbents removed all the Hg introduced to the columns. Thiol-SAMMS showed the highest mean percentage of Hg removed (87% ± 2.9%), followed by Organoclay PM-199 (71% ± 0.4%), pine biochar (57% ± 22.3%), SediMite (61% ± 0.8%), and the control quartz sand (11% ± 5.6%). Thiol-SAMMS was the only sorbent to exhibit retardation of Hg in comparison to the conservative tracer Br-. For the remaining sorbents, Br- along with low concentrations of Hg were eluted within the first 3 pore volumes, indicating limited retardation of Hg. Overall, removal of Hg by sorbents was substantial, suggesting that sorbents might be suitable for deployment in contaminated environments. High concentrations of DOM leaching from the soil columns likely influenced the speciation of Hg and inhibited sorption to the sorbents. Incomplete removal of Hg by any sorbent suggests that additional optimization is needed to increase efficiency.


Subject(s)
Environmental Pollutants , Mercury , Environmental Pollution , Humans , Mercury/analysis , Soil
8.
Commun Biol ; 3(1): 320, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32561885

ABSTRACT

Bacteria and archaea possessing the hgcAB gene pair methylate inorganic mercury (Hg) to form highly toxic methylmercury. HgcA consists of a corrinoid binding domain and a transmembrane domain, and HgcB is a dicluster ferredoxin. However, their detailed structure and function have not been thoroughly characterized. We modeled the HgcAB complex by combining metagenome sequence data mining, coevolution analysis, and Rosetta structure calculations. In addition, we overexpressed HgcA and HgcB in Escherichia coli, confirmed spectroscopically that they bind cobalamin and [4Fe-4S] clusters, respectively, and incorporated these cofactors into the structural model. Surprisingly, the two domains of HgcA do not interact with each other, but HgcB forms extensive contacts with both domains. The model suggests that conserved cysteines in HgcB are involved in shuttling HgII, methylmercury, or both. These findings refine our understanding of the mechanism of Hg methylation and expand the known repertoire of corrinoid methyltransferases in nature.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Mercury/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Bacterial Proteins/genetics , Corrinoids/metabolism , Desulfovibrio desulfuricans/genetics , Metagenome , Methylation , Models, Molecular , Multiprotein Complexes/genetics , Phylogeny , Protein Conformation , Protein Domains , Spectrophotometry, Ultraviolet
9.
Sci Total Environ ; 690: 410-416, 2019 Nov 10.
Article in English | MEDLINE | ID: mdl-31299573

ABSTRACT

Mercury (Hg) contamination of soils and sediments impacts numerous environments worldwide and constitutes a challenging remediation problem. In this study, we evaluate the impact of dissolved organic matter (DOM) on the effectiveness of eight sorbent materials considered for Hg remediation in soils and sediments. The materials include both engineered and unmodified materials based on carbon, clays, mesoporous silica and a copper alloy. Initially, we investigated the kinetics of Hg(II) complexation with DOM for a series of Hg:DOM ratios. Steady-state Hg-DOM complexation occurred within 48 to 120 h, taking longer time at higher Hg:DOC (dissolved organic carbon) molar ratios. In subsequent equilibrium experiments, Hg(II) was equilibrated with DOM at a defined Hg:DOC molar ratio (2.4 ·â€¯10-6) for 170 h and used in batch experiments to determine the effect of DOM on Hg partition coefficients and sorption isotherms by comparing Hg(II) and Hg-DOM. Hg sorption capacities of all sorbents were severely limited in the presence of DOM as a competing ligand. Thiol-SAMMS®, SediMite™ and pine biochar were most effective in reducing Hg concentrations. While pine biochar and lignin-derived carbon processed at high temperatures released negligible amounts of anions into solution, leaching of sulfate and chloride was observed for most engineered sorbent materials. Sulfate may stimulate microbial communities harboring sulfate reducing bacteria, which are considered one of the primary drivers of microbial mercury methylation in the environment. The results highlight potential challenges arising from the application of sorbents for Hg remediation in the field.

10.
Bioelectrochemistry ; 129: 162-169, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31176253

ABSTRACT

We investigate the interaction of horse heart cytochrome c (cyt c) with hematite nanowire array electrodes by cyclic voltammetry to study the electron transfer between redox active proteins and mineral surfaces. Using this model system, we quantify electron transfer rates between cyt c and hematite under varying electric potential and pH conditions. The results are consistent with two cyt c conformations adsorbed at the hematite surface: the native and a partially unfolded form. The partially unfolded protein maintained redox activity, but at a lower redox potential than the native protein. Adsorption of cyt c allowed direct electron transfer between cyt c and hematite, with an interfacial electron transfer rate, k°ET, of 0.4 s-1 for the native form and 0.55 s-1 for the partially unfolded protein at pH 7.07. At pH 4.66, protein adsorption decreased compared to neutral pH and the fraction of partially unfolded protein increased. Additionally, the diffusion controlled electron transfer rate between hematite and the electron shuttling compound anthraquinone-2,6-disulfonate (AQDS) was determined to be k°ET = 8.0·10-3 cm·s-1 at pH 7.07. Modulation of electron transfer rates as a result of conformational changes by redox active proteins has broad implications for describing chemical transformations at biological-mineral interfaces.


Subject(s)
Cytochromes c/chemistry , Ferric Compounds/chemistry , Nanowires/chemistry , Adsorption , Animals , Electrochemical Techniques , Electrodes , Electron Transport , Horses , Models, Molecular
11.
Environ Sci Technol ; 53(11): 6264-6272, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31075193

ABSTRACT

Recent studies have identified HgcAB proteins as being responsible for mercury [Hg(II)] methylation by certain anaerobic microorganisms. However, it remains controversial whether microbes take up Hg(II) passively or actively. Here, we examine the dynamics of concurrent Hg(II) adsorption, uptake, and methylation by both viable and inactivated cells (heat-killed or starved) or spheroplasts of the sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 in laboratory incubations. We show that, without addition of thiols, >60% of the added Hg(II) (25 nM) was taken up passively in 48 h by live and inactivated cells and also by cells treated with the proton gradient uncoupler, carbonylcyanide-3-chlorophenylhydrazone (CCCP). Inactivation abolished Hg(II) methylation, but the cells continued taking up Hg(II), likely through competitive binding or ligand exchange of Hg(II) by intracellular proteins or thiol-containing cellular components. Similarly, treatment with CCCP impaired the ability of spheroplasts to methylate Hg(II) but did not stop Hg(II) uptake. Spheroplasts showed a greater capacity to adsorb Hg(II) than whole cells, and the level of cytoplasmic membrane-bound Hg(II) correlated well with MeHg production, as Hg(II) methylation is associated with cytoplasmic HgcAB. Our results indicate that active metabolism is not required for cellular Hg(II) uptake, thereby providing an improved understanding of Hg(II) bioavailability for methylation.


Subject(s)
Desulfovibrio desulfuricans , Mercury , Methylmercury Compounds , Methylation , Sulfhydryl Compounds
12.
Appl Environ Microbiol ; 85(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-31028026

ABSTRACT

Methylmercury (MeHg) is a potent bioaccumulative neurotoxin that is produced by certain anaerobic bacteria and archaea. Mercury (Hg) methylation has been linked to the gene pair hgcAB, which encodes a membrane-associated corrinoid protein and a ferredoxin. Although microbial Hg methylation has been characterized in vivo, the cellular biochemistry and the specific roles of the gene products HgcA and HgcB in Hg methylation are not well understood. Here, we report the kinetics of Hg methylation in cell lysates of Desulfovibrio desulfuricans ND132 at nanomolar Hg concentrations. The enzymatic Hg methylation mediated by HgcAB is highly oxygen sensitive, irreversible, and follows Michaelis-Menten kinetics, with an apparent Km of 3.2 nM and Vmax of 19.7 fmol · min-1 · mg-1 total protein for the substrate Hg(II). Although the abundance of HgcAB in the cell lysates is extremely low, Hg(II) was quantitatively converted to MeHg at subnanomolar substrate concentrations. Interestingly, increasing thiol/Hg(II) ratios did not impact Hg methylation rates, which suggests that HgcAB-mediated Hg methylation effectively competes with cellular thiols for Hg(II), consistent with the low apparent Km Supplementation of 5-methyltetrahydrofolate or pyruvate did not enhance MeHg production, while both ATP and a nonhydrolyzable ATP analog decreased Hg methylation rates in cell lysates under the experimental conditions. These studies provide insights into the biomolecular processes associated with Hg methylation in anaerobic bacteria.IMPORTANCE The concentration of Hg in the biosphere has increased dramatically over the last century as a result of industrial activities. The microbial conversion of inorganic Hg to MeHg is a global public health concern due to bioaccumulation and biomagnification of MeHg in food webs. Exposure to neurotoxic MeHg through the consumption of fish represents a significant risk to human health and can result in neuropathies and developmental disorders. Anaerobic microbial communities in sediments and periphyton biofilms have been identified as sources of MeHg in aquatic systems, but the associated biomolecular mechanisms are not fully understood. In the present study, we investigate the biochemical mechanisms and kinetics of MeHg formation by HgcAB in sulfate-reducing bacteria. These findings advance our understanding of microbial MeHg production and may help inform strategies to limit the formation of MeHg in the environment.


Subject(s)
Desulfovibrio desulfuricans/metabolism , Methylmercury Compounds/metabolism , Desulfovibrio desulfuricans/enzymology , Kinetics , Methylation , Water Pollutants, Chemical/metabolism
13.
Environ Sci Technol ; 52(22): 13110-13118, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30335986

ABSTRACT

Rice consumption is now recognized as an important pathway of human exposure to the neurotoxin methylmercury (MeHg), particularly in countries where rice is a staple food. Although the discovery of a two-gene cluster hgcAB has linked Hg methylation to several phylogenetically diverse groups of anaerobic microorganisms converting inorganic mercury (Hg) to MeHg, the prevalence and diversity of Hg methylators in microbial communities of rice paddy soils remain unclear. We characterized the abundance and distribution of hgcAB genes using third-generation PacBio long-read sequencing and Illumina short-read metagenomic sequencing, in combination with quantitative PCR analyses in several mine-impacted paddy soils from southwest China. Both Illumina and PacBio sequencing analyses revealed that Hg methylating communities were dominated by iron-reducing bacteria (i.e., Geobacter) and methanogens, with a relatively low abundance of hgcA + sulfate-reducing bacteria in the soil. A positive correlation was observed between the MeHg content in soil and the relative abundance of Geobacter carrying the hgcA gene. Phylogenetic analysis also uncovered some hgcAB sequences closely related to three novel Hg methylators, Geobacter anodireducens, Desulfuromonas sp. DDH964, and Desulfovibrio sp. J2, among which G. anodireducens was validated for its ability to methylate Hg. These findings shed new light on microbial community composition and major clades likely driving Hg methylation in rice paddy soils.


Subject(s)
Mercury , Methylmercury Compounds , Microbiota , China , Humans , Phylogeny , Soil
14.
Proteomics ; 18(17): e1700479, 2018 09.
Article in English | MEDLINE | ID: mdl-30009483

ABSTRACT

Recent studies of microbial mercury (Hg) methylation revealed a key gene pair, hgcAB, which is essential for methylmercury (MeHg) production in the environment. However, many aspects of the mechanism and biological processes underlying Hg methylation, as well as any additional physiological functions of the hgcAB genes, remain unknown. Here, quantitative proteomics are used to identify changes in potential functional processes related to hgcAB gene deletion in the Hg-methylating bacterium Desulfovibrio desulfuricans ND132. Global proteomics analyses indicate that the wild type and ΔhgcAB strains are similar with respect to the whole proteome and the identified number of proteins, but differ significantly in the abundance of specific proteins. The authors observe changes in the abundance of proteins related to the glycolysis pathway and one-carbon metabolism, suggesting that the hgcAB gene pair is linked to carbon metabolism. Unexpectedly, the authors find that the deletion of hgcAB significantly impacts a range of metal transport proteins, specifically membrane efflux pumps such as those associated with heavy metal copper (Cu) export, leading to decreased Cu uptake in the ΔhgcAB mutant. This observation indicates possible linkages between this set of proteins and metal homeostasis in the cell. However, hgcAB gene expression is not induced by Hg, as evidenced by similarly low abundance of HgcA and HgcB proteins in the absence or presence of Hg (500 nm). Taken together, these results suggest an apparent link between HgcAB, one-carbon metabolism, and metal homeostasis, thereby providing insights for further exploration of biochemical mechanisms and biological functions of microbial Hg methylation.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Desulfovibrio desulfuricans/metabolism , Gene Deletion , Methylmercury Compounds/chemistry , Proteome/analysis , Proteome/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Phenomena , Desulfovibrio desulfuricans/genetics , Desulfovibrio desulfuricans/growth & development , Metabolic Networks and Pathways , Methylation
15.
Chemistry ; 23(64): 16219-16230, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28763123

ABSTRACT

Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury-rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry.


Subject(s)
Mercury/chemistry , Plant Oils/chemistry , Sulfur/chemistry , Adsorption , Air Pollutants/chemistry , Calorimetry, Differential Scanning , Polymers/chemical synthesis , Polymers/chemistry , Recycling , Soil Pollutants/chemistry , Surface Properties , Thermogravimetry , Water Pollutants, Chemical/chemistry
16.
Environ Sci Technol ; 50(24): 13335-13341, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27993064

ABSTRACT

Microbial conversion of inorganic mercury (IHg) to methylmercury (MeHg) is a significant environmental concern because of the bioaccumulation and biomagnification of toxic MeHg in the food web. Laboratory incubation studies have shown that, despite the presence of large quantities of IHg in cell cultures, MeHg biosynthesis often reaches a plateau or a maximum within hours or a day by an as yet unexplained mechanism. Here we report that mercuric Hg(II) can be taken up rapidly by cells of Desulfovibrio desulfuricans ND132, but a large fraction of the Hg(II) is unavailable for methylation because of strong cellular sorption. Thiols, such as cysteine, glutathione, and penicillamine, added either simultaneously with Hg(II) or after cells have been exposed to Hg(II), effectively desorb or mobilize the bound Hg(II), leading to a substantial increase in MeHg production. The amount of thiol-desorbed Hg(II) is strongly correlated to the amount of MeHg produced (r = 0.98). However, cells do not preferentially take up Hg(II)-thiol complexes, but Hg(II)-ligand exchange between these complexes and the cell-associated proteins likely constrains Hg(II) uptake and methylation. We suggest that, aside from aqueous chemical speciation of Hg(II), binding and exchange of Hg(II) between cells and complexing ligands such as thiols and naturally dissolved organics in solution is an important controlling mechanism of Hg(II) bioavailability, which should be considered when predicting MeHg production in the environment.


Subject(s)
Desulfovibrio desulfuricans/metabolism , Mercury/chemistry , Biological Availability , Methylmercury Compounds/metabolism , Sulfhydryl Compounds/metabolism , Water Pollutants, Chemical/metabolism
18.
J Proteome Res ; 15(10): 3540-3549, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27463218

ABSTRACT

Geobacter sulfurreducens PCA can reduce, sorb, and methylate mercury (Hg); however, the underlying biochemical mechanisms of these processes and interdependent metabolic pathways remain unknown. In this study, shotgun proteomics was used to compare global proteome profiles between wild-type G. sulfurreducens PCA and two mutant strains: a ΔhgcAB mutant, which is deficient in two genes known to be essential for Hg methylation and a ΔomcBESTZ mutant, which is deficient in five outer membrane c-type cytochromes and thus impaired in its ability for dissimilatory metal ion reduction. We were able to delineate the global response of G. sulfurreducens PCA in both mutants and identify cellular networks and metabolic pathways that were affected by the loss of these genes. Deletion of hgcAB increased the relative abundances of proteins implicated in extracellular electron transfer, including most of the c-type cytochromes, PilA-C, and OmpB, and is consistent with a previously observed increase in Hg reduction in the ΔhgcAB mutant. Deletion of omcBESTZ was found to significantly increase relative abundances of various methyltransferases, suggesting that a loss of dissimilatory reduction capacity results in elevated activity among one-carbon (C1) metabolic pathways and thus increased methylation. We show that G. sulfurreducens PCA encodes only the folate branch of the acetyl-CoA pathway, and proteins associated with the folate branch were found at lower abundance in the ΔhgcAB mutant strain than the wild type. This observation supports the hypothesis that the function of HgcA and HgcB is linked to C1 metabolism through the folate branch of the acetyl-CoA pathway by providing methyl groups required for Hg methylation.


Subject(s)
Geobacter/metabolism , Mercury/metabolism , Metals/metabolism , Proteome/metabolism , Acetyl Coenzyme A/metabolism , Bacterial Proteins/metabolism , Cytochrome c Group/deficiency , Electron Transport , Gene Deletion , Geobacter/genetics , Methylation , Oxidation-Reduction
19.
Environ Sci Technol ; 50(8): 4366-73, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27019098

ABSTRACT

Microbial methylation and demethylation are two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems. Although mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjiensis Bem. Here we report, for the first time, that the strain G. bemidjiensis Bem can mediate a suite of Hg transformations, including Hg(II) reduction, Hg(0) oxidation, MeHg production and degradation under anoxic conditions. Results suggest that G. bemidjiensis utilizes a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) as the major reaction product, possibly due to the presence of genes encoding homologues of an organomercurial lyase (MerB) and a mercuric reductase (MerA). In addition, the cells can strongly sorb Hg(II) and MeHg, reduce or oxidize Hg, resulting in both time and concentration-dependent Hg species transformations. Moderate concentrations (10-500 µM) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of Hg methylation and demethylation among anaerobic bacteria, thereby influencing net MeHg production in anoxic water and sediments.


Subject(s)
Environmental Pollutants/metabolism , Geobacter/metabolism , Mercury/metabolism , Anaerobiosis , Biodegradation, Environmental , Cysteine/chemistry , Environmental Pollutants/chemistry , Iron/metabolism , Lyases/metabolism , Mercury/chemistry , Methylation , Methylmercury Compounds/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism
20.
Toxicol Lett ; 242: 60-67, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26626101

ABSTRACT

PURPOSE: The mechanisms by which gut microbiota contribute to methylmercury metabolism remain unclear. Among a cohort of pregnant mothers, the objectives of our pilot study were to determine (1) associations between gut microbiota and mercury concentrations in biomarkers (stool, hair and cord blood) and (2) the contributions of gut microbial mercury methylation/demethylation to stool methylmercury. METHODS: Pregnant women (36-39 weeks gestation, n=17) donated hair and stool specimens, and cord blood was collected for a subset (n=7). The diversity of gut microbiota was determined using 16S rRNA gene profiling (n=17). For 6 stool samples with highest/lowest methylmercury concentrations, metagenomic whole genome shotgun sequencing was employed to search for the mercury methylation gene (hgcA), and two mer operon genes involved in methylmercury detoxification (merA and merB). RESULTS: Seventeen bacterial genera were significantly correlated (increasing or decreasing) with stool methylmercury, stool inorganic mercury, or hair total mercury; however, aside from one genus, there was no overlap between biomarkers. There were no definitive matches for hgcA or merB, while merA was detected at low concentrations in all six samples. MAJOR CONCLUSIONS: Proportional differences in stool methylmercury were not likely attributed to gut microbiota through methylation/demethylation. Gut microbiota potentially altered methylmercury metabolism using indirect pathways.


Subject(s)
Bacteria/metabolism , Fetal Blood/metabolism , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Maternal-Fetal Exchange , Methylmercury Compounds/blood , Bacteria/classification , Bacteria/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biotransformation , Feces/chemistry , Female , Gene Expression Profiling/methods , Gestational Age , Hair/chemistry , Humans , Lyases/genetics , Lyases/metabolism , Maternal Exposure , Metagenome , Metagenomics/methods , Oxidoreductases/genetics , Oxidoreductases/metabolism , Pilot Projects , Pregnancy , Pregnancy Trimester, Third , Ribotyping
SELECTION OF CITATIONS
SEARCH DETAIL
...