Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Dis Model Mech ; 17(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38813848

ABSTRACT

Evidence suggests the presence of microglial activation and microRNA (miRNA) dysregulation in amyotrophic lateral sclerosis (ALS), the most common form of adult motor neuron disease. However, few studies have investigated whether the miRNA dysregulation originates from microglia. Furthermore, TDP-43 (encoded by TARDBP), involved in miRNA biogenesis, aggregates in tissues of ∼98% of ALS cases. Thus, this study aimed to determine whether expression of the ALS-linked TDP-43M337V mutation in a transgenic mouse model dysregulates microglia-derived miRNAs. RNA sequencing identified several dysregulated miRNAs released by transgenic microglia and a differential miRNA release by lipopolysaccharide-stimulated microglia, which was more pronounced in cells from female mice. We validated the downregulation of three candidate miRNAs, namely, miR-16-5p, miR-99a-5p and miR-191-5p, by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and identified their predicted targets, which primarily include genes involved in neuronal development and function. These results suggest that altered TDP-43 function leads to changes in the miRNA population released by microglia, which may in turn be a source of the miRNA dysregulation observed in the disease. This has important implications for the role of neuroinflammation in ALS pathology and could provide potential therapeutic targets.


Subject(s)
Amyotrophic Lateral Sclerosis , Mice, Transgenic , MicroRNAs , Microglia , Mutation , Sex Characteristics , Microglia/metabolism , Microglia/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Female , Male , Mutation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mice , Extracellular Space/metabolism , Humans , Lipopolysaccharides/pharmacology , Gene Expression Regulation
2.
Dis Model Mech ; 17(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38721655

ABSTRACT

Evidence suggests the presence of microglial activation and microRNA (miRNA) dysregulation in amyotrophic lateral sclerosis (ALS), the most common form of adult motor neuron disease. However, few studies have investigated whether the miRNA dysregulation originates from microglia. Furthermore, TDP-43 (encoded by TARDBP), involved in miRNA biogenesis, aggregates in tissues of ∼98% of ALS cases. Thus, this study aimed to determine whether expression of the ALS-linked TDP-43M337V mutation in a transgenic mouse model dysregulates microglia-derived miRNAs. RNA sequencing identified several dysregulated miRNAs released by transgenic microglia and a differential miRNA release by lipopolysaccharide-stimulated microglia, which was more pronounced in cells from female mice. We validated the downregulation of three candidate miRNAs, namely, miR-16-5p, miR-99a-5p and miR-191-5p, by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and identified their predicted targets, which primarily include genes involved in neuronal development and function. These results suggest that altered TDP-43 function leads to changes in the miRNA population released by microglia, which may in turn be a source of the miRNA dysregulation observed in the disease. This has important implications for the role of neuroinflammation in ALS pathology and could provide potential therapeutic targets.


Subject(s)
Amyotrophic Lateral Sclerosis , Mice, Transgenic , MicroRNAs , Microglia , Mutation , Sex Characteristics , Microglia/metabolism , Microglia/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Female , Male , Mutation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mice , Extracellular Space/metabolism , Humans , Lipopolysaccharides/pharmacology , Gene Expression Regulation
4.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498882

ABSTRACT

Objective markers for the neurodegenerative disorder progressive supranuclear palsy (PSP) are needed to provide a timely diagnosis with greater certainty. Non-coding RNA (ncRNA), including microRNA, piwi-interacting RNA, and transfer RNA, are good candidate markers in other neurodegenerative diseases, but have not been investigated in PSP. Therefore, as proof of principle, we sought to identify whether they were dysregulated in matched serum and cerebrospinal fluid (CSF) samples of patients with PSP. Small RNA-seq was undertaken on serum and CSF samples from healthy controls (n = 20) and patients with PSP (n = 31) in two cohorts, with reverse transcription-quantitative PCR (RT-qPCR) to confirm their dysregulation. Using RT-qPCR, we found in serum significant down-regulation in hsa-miR-92a-3p, hsa-miR-626, hsa-piR-31068, and tRNA-ValCAC. In CSF, both hsa-let-7a-5p and hsa-piR-31068 showed significant up-regulation, consistent with their changes observed in the RNA-seq results. Interestingly, we saw no correlation in the expression of hsa-piR-31068 within our matched serum and CSF samples, suggesting there is no common dysregulatory mechanism between the two biofluids. While these changes were in a small cohort of samples, we have provided novel evidence that ncRNA in biofluids could be possible diagnostic biomarkers for PSP and further work will help to expand this potential.


Subject(s)
MicroRNAs , Supranuclear Palsy, Progressive , Humans , Supranuclear Palsy, Progressive/diagnosis , Supranuclear Palsy, Progressive/genetics , Biomarkers , MicroRNAs/genetics , Down-Regulation
5.
Ann Med ; 54(1): 3069-3078, 2022 12.
Article in English | MEDLINE | ID: mdl-36314539

ABSTRACT

INTRODUCTION: Objective biomarkers for the fatal neurodegenerative disease amyotrophic lateral sclerosis or motor neuron disease (ALS/MND) are critical for diagnosis, drug development, clinical trials, and insight into disease pathology. Key candidates for biomarkers present in biofluids include non-coding RNA (ncRNA) transcripts including microRNA, piwi-interacting RNA and transfer RNA. To determine if the central nervous system was the source of the dysregulated ncRNA biomarkers we previously observed in serum, we sought to identify dysregulated ncRNA candidates in cerebrospinal fluid (CSF) which may provide new insight into the disease pathology. METHODS AND MATERIALS: Small RNA sequencing (RNA-seq) was undertaken on CSF samples from healthy controls (n = 18), disease mimics (n = 8), and ALS patients (n = 40) in our Oxford Study for Biomarkers of ALS cohort, with RT-qPCR used to confirm their dysregulation. RESULTS: We found a range of ncRNA that were dysregulated in the RNA-seq screen, but these failed to be validated or detected in some cases using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Additionally, our previously identified serum ncRNA biomarker showed no change in CSF or correlation to serum. CONCLUSIONS: This study suggests the CSF may not be the source of dysregulated ncRNA in the serum and highlights the difficulty in identifying ncRNA in CSF as biomarkers for ALS.KEY MESSAGESIn this current study, we investigated the expression of non-coding RNA transcripts in the cerebrospinal fluid of ALS patients compared to healthy controls.RNA-seq identified dysregulated non-coding RNA transcripts, but these were not validated with RT-qPCR.We conclude that cerebrospinal fluid is not a suitable source of diagnostic biomarkers.


Subject(s)
Amyotrophic Lateral Sclerosis , MicroRNAs , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/pathology , Biomarkers , Cohort Studies
6.
Brain Commun ; 2(1): fcaa053, 2020.
Article in English | MEDLINE | ID: mdl-32613197

ABSTRACT

Objective biomarkers for the clinically heterogeneous adult-onset neurodegenerative disorder amyotrophic lateral sclerosis are crucial to facilitate assessing emerging therapeutics and improve the diagnostic pathway in what is a clinically heterogeneous syndrome. With non-coding RNA transcripts including microRNA, piwi-RNA and transfer RNA present in human biofluids, we sought to identify whether non-coding RNA in serum could be biomarkers for amyotrophic lateral sclerosis. Serum samples from our Oxford Study for Biomarkers in motor neurone disease/amyotrophic lateral sclerosis discovery cohort of amyotrophic lateral sclerosis patients (n = 48), disease mimics (n = 16) and age- and sex-matched healthy controls (n = 24) were profiled for non-coding RNA expression using RNA-sequencing, which showed a wide range of non-coding RNA to be dysregulated. We confirmed significant alterations with reverse transcription-quantitative PCR in the expression of hsa-miR-16-5p, hsa-miR-21-5p, hsa-miR-92a-3p, hsa-piR-33151, TRV-AAC4-1.1 and TRA-AGC6-1.1. Furthermore, hsa-miR-206, a previously identified amyotrophic lateral sclerosis biomarker, showed a binary-like pattern of expression in our samples. Using the expression of these non-coding RNA, we were able to discriminate amyotrophic lateral sclerosis samples from healthy controls in our discovery cohort using a random forest analysis with 93.7% accuracy with promise in predicting progression rate of patients. Importantly, cross-validation of this novel signature using a new geographically distinct cohort of samples from the United Kingdom and Germany with both amyotrophic lateral sclerosis and control samples (n = 156) yielded an accuracy of 73.9%. The high prediction accuracy of this non-coding RNA-based biomarker signature, even across heterogeneous cohorts, demonstrates the strength of our approach as a novel platform to identify and stratify amyotrophic lateral sclerosis patients.

7.
J Neuroinflammation ; 17(1): 135, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32345319

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron degeneration in adults, and several mechanisms underlying the disease pathology have been proposed. It has been shown that glia communicate with other cells by releasing extracellular vesicles containing proteins and nucleic acids, including microRNAs (miRNAs), which play a role in the post-transcriptional regulation of gene expression. Dysregulation of miRNAs is commonly observed in ALS patients, together with inflammation and an altered microglial phenotype. However, the role of miRNA-containing vesicles in microglia-to-neuron communication in the context of ALS has not been explored in depth. This review summarises the evidence for the presence of inflammation, pro-inflammatory microglia and dysregulated miRNAs in ALS, then explores how microglia may potentially be responsible for this miRNA dysregulation. The possibility of pro-inflammatory ALS microglia releasing miRNAs which may then enter neuronal cells to contribute to degeneration is also explored. Based on the literature reviewed here, microglia are a likely source of dysregulated miRNAs and potential mediators of neurodegenerative processes. Therefore, dysregulated miRNAs may be promising candidates for the development of therapeutic strategies.


Subject(s)
Amyotrophic Lateral Sclerosis , Cell Communication/physiology , MicroRNAs/metabolism , Microglia/metabolism , Nerve Degeneration/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Extracellular Vesicles/metabolism , Humans , Microglia/pathology , Nerve Degeneration/pathology
8.
Front Neurol ; 10: 1129, 2019.
Article in English | MEDLINE | ID: mdl-31673251

ABSTRACT

[This corrects the article DOI: 10.3389/fneur.2019.00186.].

9.
Front Neurol ; 10: 186, 2019.
Article in English | MEDLINE | ID: mdl-30899244

ABSTRACT

Amyotrophic lateral sclerosis (ALS; MND, motor neuron disease) is a debilitating neurodegenerative disease affecting 4.5 per 100,000 people per year around the world. There is currently no cure for this disease, and its causes are relatively unknown. Diagnosis is based on a battery of clinical tests up to a year after symptom onset, with no robust markers of diagnosis or disease progression currently identified. A major thrust of current research is to identify potential non-invasive markers ("biomarkers") in body fluids such as blood and/or cerebrospinal fluid (CSF) to use for diagnostic or prognostic purposes. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), are found at detectable and stable levels in blood and other bodily fluids. Specific ncRNAs can vary in levels between ALS patients and non-ALS controls without the disease. In this review, we will provide an overview of early findings, demonstrate the potential of this new class as biomarkers, and discuss future challenges and opportunities taking this forward to help patients with ALS.

10.
Front Mol Neurosci ; 8: 4, 2015.
Article in English | MEDLINE | ID: mdl-25755632

ABSTRACT

Long-term potentiation (LTP) is a form of synaptic plasticity that is an excellent model for the molecular mechanisms that underlie memory. LTP, like memory, is persistent, and both are widely believed to be maintained by a coordinated genomic response. Recently, a novel class of non-coding RNA, microRNA, has been implicated in the regulation of LTP. MicroRNA negatively regulate protein synthesis by binding to specific messenger RNA response elements. The aim of this review is to summarize experimental evidence for the proposal that microRNA play a major role in the regulation of LTP. We discuss a growing body of research which indicates that specific microRNA regulate synaptic proteins relevant to LTP maintenance, as well as studies that have reported differential expression of microRNA in response to LTP induction. We conclude that microRNA are ideally suited to contribute to the regulation of LTP-related gene expression; microRNA are pleiotropic, synaptically located, tightly regulated, and function in response to synaptic activity. The potential impact of microRNA on LTP maintenance as regulators of gene expression is enormous.

11.
Front Mol Neurosci ; 7: 98, 2014.
Article in English | MEDLINE | ID: mdl-25538559

ABSTRACT

Coordinated regulation of gene expression is essential for consolidation of the memory mechanism, long-term potentiation (LTP). Triggering of LTP by N-methyl-D-aspartate receptor (NMDAR) activation rapidly activates constitutive and inducible transcription factors, which promote expression of genes responsible for LTP maintenance. As microRNA (miRNA) coordinate expression of genes related through seed sites, we hypothesize that miRNA contribute to the regulation of the LTP-induced gene response. MiRNA function primarily as negative regulators of gene expression. As LTP induction promotes a generalized rapid up-regulation of gene expression, we predicted a complementary rapid down-regulation of miRNA levels. Accordingly, we carried out global miRNA expression profiling in the rat dentate gyrus 20 min post-LTP induction in vivo. Consistent with our hypothesis, we found a large number of differentially expressed miRNA, the majority down-regulated. Detailed analysis of miR-34a-5p and miR-132-3p revealed this down-regulation was transient and NMDAR-dependent, whereby block of NMDARs released an activity-associated inhibitory mechanism. Furthermore, down-regulation of mature miR-34a-5p and miR-132-3p occurred solely by post-transcriptional mechanisms, occurring despite an associated up-regulation of the pri-miR-132 transcript. To understand how down-regulation of miR-34a-5p and miR-132-3p intersects with the molecular events occurring following LTP, we used bioinformatics to identify potential targets. Previously validated targets included the key LTP-regulated genes Arc and glutamate receptor subunits. Predicted targets included the LTP-linked kinase, Mapk1, and neuropil-associated transcripts Hn1 and Klhl11, which were validated using luciferase reporter assays. Furthermore, we found that the level of p42-Mapk1, the protein encoded by the Mapk1 transcript, was up-regulated following LTP. Together, these data support the interpretation that miRNA, in particular miR-34a-5p and miR-132-3p, make a surprisingly rapid contribution to synaptic plasticity via dis-inhibition of translation of key plasticity-related molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...