Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Toxicol ; 25(2): 144-60, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18242050

ABSTRACT

There is no information on reproductive/developmental effects in mice from dietary estrogen. Therefore, 10 adult CD-1 mice/sex/group were administered dietary 17beta-estradiol (E2) at 0, 0.005, 0.05, 0.5, 2.5, 5, 10, and 50 ppm for 2-week prebreed, mating, gestation, lactation. F1 weanlings (3/sex/litter) were necropsied and 2/sex/litter were retained, with exposure, until vaginal patency (VP) or preputial separation (PPS) and then necropsied. Results included complete infertility at 2.5-50 ppm with normal mating indices. At 0.5 ppm (and above), F0 adult female uterus plus cervix plus vagina weights (UCVW) were increased. At 0.5 ppm: prolonged gestational length; increased F1 stillbirth index; reduced live birth index and litter size; decreased testes and epididymides weights at weaning; unaffected AGD on pnd 0 and 21; delayed PPS; increased undescended testes; unaffected prostate weight; accelerated VP; enlarged vaginas; fluid-filled uteri. At 0.05 ppm: no F0 reproductive effects, increased F1 weanling UCVW; delayed PPS. The NOEL was 0.005 ppm ( approximately 1 microg/kg/day).


Subject(s)
Estradiol/toxicity , Fetus/drug effects , Reproduction/drug effects , Animals , Body Weight/drug effects , Diet , Dose-Response Relationship, Drug , Female , Male , Mice , Mice, Inbred ICR , Organ Size/drug effects
2.
Toxicol Sci ; 92(1): 295-310, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16624851

ABSTRACT

This study evaluated the potential for dietary para-nonylphenol (NP; CAS No. 84852-15-3) to affect parental fertility and growth and development of three offspring generations in CD (Sprague-Dawley [SD]) rats, including sperm counts across generations to determine the validity of equivocal reductions observed in the F2 generation by R. E. Chapin et al. (1999, Toxicol. Sci. 52, 80-91). Male rat kidney toxicity was also examined based on inconsistent observations in NP-exposed rats at 2000 ppm but not at 200 or 650 ppm in Purina 5002 (H. C. Cunny et al., 1997, Regul. Toxicol. Pharmacol. 26, 172-178) and at all of these NP concentrations in NIH-07 diet (R. E. Chapin et al., 1999, Toxicol. Sci. 52, 80-91). Concentrations were 0, 20, 200, 650, and 2000 ppm NP in Purina 5002 diet and 0 and 650 ppm NP in NIH-07 diet. 17beta-estradiol (E2) was used as a positive control at 2.5 ppm in Purina 5002 diet. There were no NP effects on any reproductive parameters in any generation, including sperm counts. Kidney toxicity (histopathology) occurred at 650 and 2000 ppm with no clear difference for the two diets. Ovarian weight was decreased at 2000 ppm NP in all generations, with no effect on reproduction. Dietary E2 at 2.5 ppm caused renal, reproductive, and developmental (lactational and peripubertal) toxicity in all generations. This study confirmed that dietary NP is not a selective reproductive toxicant with an no observable adverse effect level (NOAEL) of > 2000 ppm ( approximately > 150 mg/kg/day) and provided an NOAEL for male rat kidney toxicity of 200 ppm NP (approximately 15 mg/kg/day).


Subject(s)
Diet , Phenols/toxicity , Animals , Dose-Response Relationship, Drug , Female , Fertility/drug effects , Growth/drug effects , Kidney/drug effects , Male , Phenols/administration & dosage , Rats , Rats, Sprague-Dawley , Reproduction/drug effects
3.
Regul Toxicol Pharmacol ; 38(1): 43-51, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12878053

ABSTRACT

To better interpret the responses to para-nonylphenol (NP; CASRN84852-15-3) in in vivo toxicity studies, including estrogen-like activity, the bioavailability of 14C-radiolabelled NP has been determined in male and female CD rats following either single oral doses of 10 and 100 mg/kg, single i.v. doses of 10 mg/kg, or repeated daily oral doses of 10 mg/kg for up to 14 d. Up to 80% of an oral dose of NP was rapidly absorbed, the remainder being excreted unchanged in faeces. Excretion was largely complete within 24 h of dosing. Following absorption, NP was metabolised in the liver, with the majority of the metabolites excreted in bile, mainly as glucuronide conjugates. Unchanged NP was found only in bile and urine from female rats given a 100 mg/kg dose, indicating that metabolic saturation occurred. Following repeated dosing, steady state was reached within 7 d. There was no evidence of significant accumulation into tissue compartments nor of a significant change in clearance or the metabolite profiles in urine. These data suggest that the estrogen-like effects observed in toxicity studies with female rats at oral NP doses of approximately 50 mg/kg/d and greater are a result of the increased bioavailability of NP which occurs following metabolic saturation.


Subject(s)
Phenols/pharmacokinetics , Absorption , Administration, Oral , Animals , Area Under Curve , Biological Availability , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Feces/chemistry , Female , Half-Life , Injections, Intravenous , Liver/metabolism , Male , Metabolic Clearance Rate , Phenols/administration & dosage , Phenols/metabolism , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...