Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Biomed Opt Express ; 11(10): 5772-5782, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33149985

ABSTRACT

The integration of fluorescence sensing directly into the fluidic channel in lab-on-a chip systems using thin film Si detectors enables on-chip multi-target medical diagnostics and biochemical analyses. This paper reports on the experimental demonstration and theoretical analysis of a filter-free thin film fluorescence sensor designed for integration into the channel of a fluidic platform. Static tests of this optical sensor show repeatable detection of 6-Hex fluorophore concentrations from 300 nM to 20 µM, with an average signal-to-noise ratio of 26 dB-50 dB, which agrees well with the theoretical model.

2.
Biomed Opt Express ; 10(11): 5703-5715, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31799041

ABSTRACT

Spatially resolved diffuse reflectance spectroscopy (SRDRS) is a promising technique for characterization of colon tissue. Herein, two methods for extracting the reduced scattering and absorption coefficients ( µ s ' ( λ ) and µ a ( λ ) ) from SRDRS data using lookup tables of simulated diffuse reflectance are reported. Experimental measurements of liquid tissue phantoms performed with a custom multi-pixel silicon SRDRS sensor spanning the 450 - 750 nm wavelength range were used to evaluate the extraction methods, demonstrating that the combined use of spatial and spectral data reduces extraction error compared to use of spectral data alone. Additionally, SRDRS measurements of normal and tumor ex-vivo human colon tissue are presented along with µ s ' ( λ ) and µ a ( λ ) extracted from these measurements.

3.
Nat Commun ; 9(1): 1791, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29725005

ABSTRACT

Locally energized particles form the basis for emerging classes of active matter. The design of active particles has led to their controlled locomotion and assembly. The next generation of particles should demonstrate robust control over their active assembly, disassembly, and reconfiguration. Here we introduce a class of semiconductor microparticles that can be comprehensively designed (in size, shape, electric polarizability, and patterned coatings) using standard microfabrication tools. These custom silicon particles draw energy from external electric fields to actively propel, while interacting hydrodynamically, and sequentially assemble and disassemble on demand. We show that a number of electrokinetic effects, such as dielectrophoresis, induced charge electrophoresis, and diode propulsion, can selectively power the microparticle motions and interactions. The ability to achieve on-demand locomotion, tractable fluid flows, synchronized motility, and reversible assembly using engineered silicon microparticles may enable advanced applications that include remotely powered microsensors, artificial muscles, reconfigurable neural networks and computational systems.

4.
Biomed Opt Express ; 9(3): 1164-1176, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29541510

ABSTRACT

Early detection and surveillance of disease progression in epithelial tissue is key to improving long term patient outcomes for colon and esophageal cancers, which account for nearly a quarter of cancer related mortalities worldwide. Spatially resolved diffuse reflectance spectroscopy (SRDRS) is a non-invasive optical technique to sense biological changes at the cellular and sub-cellular level that occur when normal tissue becomes diseased, and has the potential to significantly improve the current standard of care for endoscopic gastrointestinal (GI) screening. Herein the design, fabrication, and characterization of the first custom SRDRS device to enable endoscopic SRDRS GI tissue characterization using a custom silicon (Si) thin film multi-pixel endoscopic optical sensor (MEOS) is described.

5.
Biomed Opt Express ; 8(3): 1512-1524, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28663846

ABSTRACT

Diffuse reflectance spectroscopy (DRS) is being used in exploratory clinical applications such as cancer margin assessment on excised tissue. However, when interrogating nonplanar tissue anomalies can arise from non-uniform pressure. Herein is reported the design, fabrication, and test of flexible, thin film silicon photodetectors (PDs) bonded to a flexible substrate designed for use in conformal DRS. The PDs have dark currents and responsivities comparable to conventional Si PDs, and were characterized while flat and while flexed at multiple radii of curvature using liquid phantoms mimicking adipose and malignant breast tissue. The DRS and nearest neighbor crosstalk results were compared with Monte Carlo simulations, showing good agreement between simulation and experiment.

6.
J Biomed Opt ; 22(2): 26007, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28241273

ABSTRACT

We have developed a portable, breast margin assessment probe leveraging diffuse optical spectroscopy to quantify the morphological landscape of breast tumor margins during breast conserving surgery. The approach presented here leverages a custom-made 16-channel annular photodiode imaging array (arranged in a 4 × 4 grid), a raster-scanning imaging platform with precision pressure control, and compressive sensing with an optimized set of eight wavelengths in the visible spectral range. A scalable Monte-Carlo-based inverse model is used to generate optical property [ ? s ? ( ? ) and ? a ( ? ) ] measures for each of the 16 simultaneously captured diffuse reflectance spectra. Subpixel sampling (0.75 mm) is achieved through incremental x , y raster scanning of the imaging probe, providing detailed optical parameter maps of breast margins over a 2 × 2 ?? cm 2 area in ? 9 ?? min . The morphological landscape of a tumor margin is characterized using optical surrogates for the fat to fibroglandular content ratio, which has demonstrated diagnostic utility in delineating tissue subtypes in the breast.


Subject(s)
Breast Neoplasms/diagnostic imaging , Spectrum Analysis/instrumentation , Female , Humans , Mastectomy, Segmental/instrumentation , Miniaturization , Monte Carlo Method
7.
Opt Express ; 24(6): 6783-92, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-27136864

ABSTRACT

Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Experimental results are supported by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave.

8.
Opt Express ; 22(5): 5052-9, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24663844

ABSTRACT

We report thin film single crystal silicon photodetectors (PDs), composed of 13- 25 µm thick silicon, heterogeneously bonded to transparent Pyrex® and flexible Kapton® substrates. The measured responsivity and dark current density of the PDs on pyrex is 0.19 A/W - 0.34 A/W (λ = 470 nm - 600 nm) and 0.63 nA/cm(2), respectively, at ~0V bias. The measured responsivity and dark current density of the flexible PDs is 0.16 A/W - 0.26 A/W (λ = 470 nm - 600 nm) and 0.42 nA/cm(2), respectively, at a ~0V bias. The resulting responsivity-to-dark current density ratios for the reported rigid and flexible PDs are 0.3-0.54 cm(2)/nW and 0.38-0.62 cm(2)/nW, respectively. These are the highest reported responsivity-to-dark current density ratios for heterogeneously bonded thin film single crystal Si PDs, to the best of our knowledge. These PDs are customized for applications in biomedical imaging and integrated biochemical sensing.


Subject(s)
Optical Devices , Silicon , Biomedical Engineering , Diagnostic Imaging/instrumentation , Equipment Design , Humans , Optical Phenomena , Spectrum Analysis/instrumentation
9.
Opt Express ; 21(22): 26620-30, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24216883

ABSTRACT

This paper presents an optical element capable of multiplexing two diffraction patterns for two orthogonal linear polarizations, based on the use of non-resonant metamaterial cross elements. The metamaterial cross elements provide unique building blocks for engineering arbitrary birefringence. As a proof-of-concept demonstration, we present the design and experimental characterization of a polarization multiplexed blazed diffraction grating and a polarization multiplexed computer-generated hologram, for the telecommunication wavelength of λ = 1.55 µm. A quantitative study of the polarization multiplexed grating reveals that this approach yields a very large polarization contrast ratio. The results show that metamaterials can form the basis for a versatile and compact platform useful in the design of multi-functional photonic devices.

10.
Proc Natl Acad Sci U S A ; 110(34): E3225-34, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23929777

ABSTRACT

At our body surface, the epidermis absorbs UV radiation. UV overexposure leads to sunburn with tissue injury and pain. To understand how, we focus on TRPV4, a nonselective cation channel highly expressed in epithelial skin cells and known to function in sensory transduction, a property shared with other transient receptor potential channels. We show that following UVB exposure mice with induced Trpv4 deletions, specifically in keratinocytes, are less sensitive to noxious thermal and mechanical stimuli than control animals. Exploring the mechanism, we find that epidermal TRPV4 orchestrates UVB-evoked skin tissue damage and increased expression of the proalgesic/algogenic mediator endothelin-1. In culture, UVB causes a direct, TRPV4-dependent Ca(2+) response in keratinocytes. In mice, topical treatment with a TRPV4-selective inhibitor decreases UVB-evoked pain behavior, epidermal tissue damage, and endothelin-1 expression. In humans, sunburn enhances epidermal expression of TRPV4 and endothelin-1, underscoring the potential of keratinocyte-derived TRPV4 as a therapeutic target for UVB-induced sunburn, in particular pain.


Subject(s)
Endothelin-1/metabolism , Epithelial Cells/radiation effects , Pain/metabolism , Signal Transduction/radiation effects , Sunburn/metabolism , TRPV Cation Channels/metabolism , Ultraviolet Rays , Analysis of Variance , Animals , Cells, Cultured , Epithelial Cells/metabolism , Immunohistochemistry , Mice , Mice, Transgenic , Microscopy, Electron , Pain/etiology , Skin/cytology , Sunburn/pathology
11.
PLoS One ; 8(4): e61767, 2013.
Article in English | MEDLINE | ID: mdl-23613927

ABSTRACT

A wavelength selection method that combines an inverse Monte Carlo model of reflectance and a genetic algorithm for global optimization was developed for the application of spectral imaging of breast tumor margins. The selection of wavelengths impacts system design in cost, size, and accuracy of tissue quantitation. The minimum number of wavelengths required for the accurate quantitation of tissue optical properties is 8, with diminishing gains for additional wavelengths. The resulting wavelength choices for the specific probe geometry used for the breast tumor margin spectral imaging application were tested in an independent pathology-confirmed ex vivo breast tissue data set and in tissue-mimicking phantoms. In breast tissue, the optical endpoints (hemoglobin, ß-carotene, and scattering) that provide the contrast between normal and malignant tissue specimens are extracted with the optimized 8-wavelength set with <9% error compared to the full spectrum (450-600 nm). A multi-absorber liquid phantom study was also performed to show the improved extraction accuracy with optimization and without optimization. This technique for selecting wavelengths can be used for designing spectral imaging systems for other clinical applications.


Subject(s)
Breast Neoplasms/diagnosis , Algorithms , Humans , Monte Carlo Method
12.
Biomed Opt Express ; 3(12): 3211-22, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23243571

ABSTRACT

Diffuse reflectance spectroscopy (DRS) is a well-established method to quantitatively distinguish between benign and cancerous tissue for tumor margin assessment. Current multipixel DRS margin assessment tools are bulky fiber-based probes that have limited scalability. Reported herein is a new approach to multipixel DRS probe design, which utilizes direct detection of the DRS signal by using optimized custom photodetectors in direct contact with the tissue. This first fiberless DRS imaging system for tumor margin assessment consists of a 4 × 4 array of annular silicon photodetectors and a constrained free-space light delivery tube optimized to deliver light across a 256 mm(2) imaging area. This system has 4.5 mm spatial resolution. The signal-to-noise ratio measured for normal and malignant breast tissue-mimicking phantoms was 35 dB to 45 dB for λ = 470 nm to 600 nm.

13.
ACS Nano ; 6(10): 9237-46, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-22966857

ABSTRACT

We demonstrate a plasmon nanoruler using a coupled film nanoparticle (film-NP) format that is well-suited for investigating the sensitivity extremes of plasmonic coupling. Because it is relatively straightforward to functionalize bulk surface plasmon supporting films, such as gold, we are able to precisely control plasmonic gap dimensions by creating ultrathin molecular spacer layers on the gold films, on top of which we immobilize plasmon resonant nanoparticles (NPs). Each immobilized NP becomes coupled to the underlying film and functions as a plasmon nanoruler, exhibiting a distance-dependent resonance red shift in its peak plasmon wavelength as it approaches the film. Due to the uniformity of response from the film-NPs to separation distance, we are able to use extinction and scattering measurements from ensembles of film-NPs to characterize the coupling effect over a series of very short separation distances-ranging from 5 to 20 Å-and combine these measurements with similar data from larger separation distances extending out to 27 nm. We find that the film-NP plasmon nanoruler is extremely sensitive at very short film-NP separation distances, yielding spectral shifts as large as 5 nm for every 1 Å change in separation distance. The film-NP coupling at extremely small spacings is so uniform and reliable that we are able to usefully probe gap dimensions where the classical Drude model of the conducting electrons in the metals is no longer descriptive; for gap sizes smaller than a few nanometers, either quantum or semiclassical models of the carrier response must be employed to predict the observed wavelength shifts. We find that, despite the limitations, large field enhancements and extreme sensitivity persist down to even the smallest gap sizes.


Subject(s)
Nanostructures/chemistry , Nanostructures/ultrastructure , Surface Plasmon Resonance/instrumentation , Surface Plasmon Resonance/methods , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
14.
Nat Mater ; 11(5): 450-4, 2012 Mar 18.
Article in English | MEDLINE | ID: mdl-22426458

ABSTRACT

As a result of advances in nanotechnology and the burgeoning capabilities for fabricating materials with controlled nanoscale geometries, the traditional notion of what constitutes an optical device continues to evolve. The fusion of maturing low-cost lithographic techniques with newer optical design strategies has enabled the introduction of artificially structured metamaterials in place of conventional materials for improving optical components as well as realizing new optical functionality. Here we demonstrate multilayer, lithographically patterned, subwavelength, metal elements, whose distribution forms a computer-generated phase hologram in the infrared region (10.6 µm). Metal inclusions exhibit extremely large scattering and can be implemented in metamaterials that exhibit a wide range of effective medium response, including anomalously large or negative refractive index; optical magnetism; and controlled anisotropy. This large palette of metamaterial responses can be leveraged to achieve greater control over the propagation of light, leading to more compact, efficient and versatile optical components.

15.
Opt Express ; 20(2): 1706-13, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22274513

ABSTRACT

Employing artificially structured metamaterials provides a means of circumventing the limits of conventional optical materials. Here, we use transformation optics (TO) combined with nanolithography to produce a planar Luneburg lens with a flat focal surface that operates at telecommunication wavelengths. Whereas previous infrared TO devices have been transformations of free-space, here we implement a transformation of an existing optical element to create a new device with the same optical characteristics but a user-defined geometry.


Subject(s)
Fiber Optic Technology/instrumentation , Infrared Rays , Lenses , Manufactured Materials , Nanotechnology/instrumentation , Telecommunications/instrumentation , Models, Theoretical , Silicon/chemistry
16.
Opt Express ; 19(24): 24411-23, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-22109468

ABSTRACT

We demonstrate the design, fabrication and characterization of an artificially structured, gradient index metamaterial with a linear index variation of Δn ~ 3.0. The linear gradient profile is repeated periodically to form the equivalent of a blazed grating, with the gradient occurring across a spatial distance of 61 µm. The grating, which operates at a wavelength of 10.6 µm, is composed of non-resonant, progressively modified "I-beam" metamaterial elements and approximates a linear phase shift gradient using 61 distinguishable phase levels. The grating structure consists of four layers of lithographically patterned metallic I-beam elements separated by dielectric layers of SiO(2). The index gradient is confirmed by comparing the measured magnitudes of the -1, 0 and +1 diffracted orders to those obtained from full wave simulations incorporating all material properties of the metals and dielectrics of the structures. The large index gradient has the potential to enable compact infrared diffractive and gradient index optics, as well as more exotic transformation optical media.


Subject(s)
Manufactured Materials , Refractometry/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis
17.
Phys Rev Lett ; 107(4): 045901, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21867022

ABSTRACT

In this Letter we demonstrate, for the first time, selective thermal emitters based on metamaterial perfect absorbers. We experimentally realize a narrow band midinfrared (MIR) thermal emitter. Multiple metamaterial sublattices further permit construction of a dual-band MIR emitter. By performing both emissivity and absorptivity measurements, we find that emissivity and absorptivity agree very well as predicted by Kirchhoff's law of thermal radiation. Our results directly demonstrate the great flexibility of metamaterials for tailoring blackbody emission.

18.
Opt Lett ; 35(20): 3474-6, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20967104

ABSTRACT

A thin-film InGaAs/GaAs edge-emitting single-quantum-well laser has been integrated with a tapered multimode SU-8 waveguide onto an Si substrate. The SU-8 waveguide is passively aligned to the laser using mask-based photolithography, mimicking electrical interconnection in Si complementary metal-oxide semiconductor, and overlaps one facet of the thin-film laser for coupling power from the laser to the waveguide. Injected threshold current densities of 260A/cm(2) are measured with the reduced reflectivity of the embedded laser facet while improving single mode coupling efficiency, which is theoretically simulated to be 77%.


Subject(s)
Lasers , Silicon/chemistry , Arsenicals/chemistry , Equipment Design , Gallium/chemistry , Indium/chemistry , Light , Optics and Photonics , Semiconductors , Silicon Dioxide/chemistry
19.
Opt Express ; 17(20): 17471-82, 2009 Sep 28.
Article in English | MEDLINE | ID: mdl-19907531

ABSTRACT

Plasmonic multi-mode interference (MMI) couplers have been investigated both numerically and experimentally at the telecommunication wavelength of 1.55 mum. In this study, the couplers are implemented using thin Au stripes that support long-range surface plasmons. We first detail the operation principle of these devices with numerical simulations and show that useful effects can be obtained despite the high material losses inherent to metallic structures. A series of MMI couplers is subsequently fabricated and experimentally characterized, showing a quantitative agreement with our numerical predictions. We conclude by discussing some of the possible applications for these structures.


Subject(s)
Interferometry/instrumentation , Optical Devices , Surface Plasmon Resonance/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity , Systems Integration
20.
Opt Lett ; 34(18): 2802-4, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19756110

ABSTRACT

A III-V thin-film single-quantum-well edge-emitting laser is patterned on both sides of the epitaxial layer and bonded to silicon. Injected threshold current densities of 420 A/cm(2) for gain-guided lasers with bottom p-stripes and top n-stripes and 244 A/cm(2) for index-guided bottom p-ridge and top n-stripe lasers are measured with a lasing wavelength of approximately 995 nm. These threshold current densities, among the lowest for thin-film edge-emitting lasers on silicon reported to date (to our knowledge), enable the implementation of integrated applications such as power-efficient portable chip-scale photonic sensing systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...