Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 356: 141856, 2024 May.
Article in English | MEDLINE | ID: mdl-38582171

ABSTRACT

Mechanistic investigations of an environmentally friendly and easy-to-implement oxidation method in the remediation of contaminated anoxic waters, i.e. groundwater, through the sole use of oxygen for the oxygen-induced oxidation of pollutants were the focus of this work. This was achieved by the addition of O2 under anoxic conditions in the presence of ferrous iron which initiated the ferrous oxidation and the simultaneous formation of reactive •OH radicals. The involvement of inorganic ligands such as carbonates in the activation of oxygen as part of the oxidation of Fe2+ in water was investigated, too. The formation of •OH radicals, was confirmed in two different, indirect approaches by a fluorescence-based method involving coumarin as •OH scavenger and by the determination of the oxidation products of different aromatic VOCs. In the latter case, the oxidation products of several typical aromatic groundwater contaminants such as BTEX (benzene, toluene, ethylbenzene, xylenes), indane and ibuprofen, were determined. The influence of other ligands in the absence of bicarbonate and the effect of pH were also addressed. The possibility of activation of O2 in carbonate-rich water i.e. groundwater, may also potentially contribute to oxidation of groundwater contaminants and support other primary remediation techniques.


Subject(s)
Carbonates , Environmental Restoration and Remediation , Groundwater , Iron , Oxidation-Reduction , Oxygen , Water Pollutants, Chemical , Oxygen/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Iron/chemistry , Groundwater/chemistry , Environmental Restoration and Remediation/methods , Carbonates/chemistry , Volatile Organic Compounds/chemistry , Hydroxyl Radical/chemistry
2.
Talanta ; 247: 123555, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35613524

ABSTRACT

A continuously operating system for monitoring groundwater contamination by aromatic VOCs has been developed. For this purpose, a novel gas-water separation unit was to be used in combination with APPI-FAIMS. The gas-water separation unit successfully reduced the humidity in the sample flow to ≤1.6 ppmv prior to analyte ionization. Initially, toluene was selected as a model aromatic VOC. The quantitative response of toluene, as a single VOC in water (LOD <1 mg L-1), was used to investigate the feasibility of the monitoring system and the effect of humidity on the signal produced by the APPI-FAIMS. With humidity increase (up to 400 ppmv) an increase of the toluene signal for about 30% was observed, including the possible formation and detection of water clusters and toluene-water clusters. Similar effects were noted in the case of benzene. However, for the detection of single contaminants such as indane and trimethylbenzenes (TMBs) this was not observed even at relative high humidity (500 ppmv). Additionally, on-site, continuous, groundwater monitoring of the aromatic VOCs contamination was carried out successfully with the gas-water separation APPI-FAIMS at low humidity (0.3-1.6 ppmv) allowing simplified monitoring of a specific, total aromatic VOCs signal in groundwater.


Subject(s)
Groundwater , Volatile Organic Compounds , Atmospheric Pressure , Groundwater/chemistry , Ion Mobility Spectrometry , Toluene/analysis , Volatile Organic Compounds/analysis , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...