Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Animals (Basel) ; 13(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36670808

ABSTRACT

Physical enrichment can improve the welfare of captive fish. Previous research has shown that fish often show preference for enriched environments, which can also result in improvements in growth performance. However, effects of enrichment are not always positive and the design and extent of the enrichment needs to be carefully considered. In this regard, information in real aquaculture scenarios is limited. The aim of this study was to serve as a proof of concept to test the feasibility of using simple PVC immersed shelters as a tool for better welfare in an organic rainbow trout farm. Our shelters induced little extra work in farm routines and had no negative effects on fish performance, health or mortality. The behavioral assessment pointed to a preference for sheltered areas in undisturbed conditions. However, no benefits were observed in terms of stress responses during standardized stress tests, and fish showed no obvious shelter-seeking behavior after disturbance. The results in terms of shelter-seeking behavior were probably limited by the short duration of the experiment, which was due to the farm's routines and needs. It is recommended that strategies for enrichment in real scenarios should be tested covering a relevant part of the life cycle of the fish in captivity, to fully account for their potential to improve welfare in aquaculture.

2.
Article in English | MEDLINE | ID: mdl-30690154

ABSTRACT

The timing with which salmonid larvae emerge from their gravel nests is thought to be correlated with a particular suite of behavioural and physiological traits that correspond to the stress coping style of the individual. Among these traits, aggressiveness, dominance and resilience to stress, are potentially interesting to exploit in aquaculture production. In the present study a series of experiments were performed, with the purpose of characterising behavioural, metabolic and production related traits in rainbow trout juveniles from different emergence fractions. Newly hatched rainbow trout were sorted according to their emergence time from an artificial redd. The early, middle, and late fractions were retained and assessed for their physiological response to stress, growth performance, metabolism, fasting tolerance, and potential for compensatory growth. The early emerging fraction showed proactive behavioural traits; they were faster to reappear following startling, showed a reduced cortisol response following stress, and a reduced metabolic cost of recovery. Emergence time was not correlated with any differences in standard or maximum metabolic rates, but was however, correlated with higher routine metabolic rates, as demonstrated by significantly bigger weight losses during fasting in the early emerging group. Growth rates and feed conversion efficiencies were not significantly different when fish were co-habitated under a restrictive feeding regime, suggesting that early emerging fish are not able to monopolise food resources. The intermediate emerging group, which makes up the bulk of a population and is often ignored, appears to possess the best growth performance traits, possibly because they do not expend excessive energy on dominance behaviour such as the early emerging group, while they are also not overly timid or stress prone such as the late emerging group.


Subject(s)
Larva/metabolism , Oncorhynchus mykiss/physiology , Animals , Aquaculture , Feeding Behavior , Hydrocortisone/metabolism , Oncorhynchus mykiss/growth & development , Oncorhynchus mykiss/metabolism , Oxygen Consumption , Stress, Physiological
3.
J Exp Biol ; 221(Pt 8)2018 04 12.
Article in English | MEDLINE | ID: mdl-29487157

ABSTRACT

Salmonid individuals show a relatively high variability in the time required to abandon the gravel nest where they hatch, the so-called 'emergence time'. Different behavioral and physiological traits have been shown to be associated with emergence time in wild salmonids. In general, early- and late-emerging fish have traits resembling those of proactive and reactive stress coping styles, respectively. Proactive fish are considered to be more resilient to stress and probably to disease, so it was hypothesized that fish with different emergence times have different abilities to resist repeated episodes of stress without suffering deleterious effects on their welfare or health status. In this study, rainbow trout eyed eggs were hatched and larvae were fractionated according to their emergence time (early fraction: first 20% of fish to emerge; intermediate fraction: mid 20%; late fraction: last 20%). When the fish were 4 months old, they were exposed to a daily repeated stress protocol for 15 days. The next day, both naïve and repeatedly stressed fish were exposed to an acute stress challenge. Different plasma (cortisol, glucose, lactate) as well as CNS (serotonergic activity) stress markers were assessed to evaluate the stress resilience of the different groups. Furthermore, an intraperitoneal infection challenge with Flavobacterium psychrophilum was carried out to assess disease resilience. Altogether, the results showed that fish from different fractions displayed differences in activation of the hypothalamus-pituitary-inter-renal axis, indicating a higher stress resilience in the fish with early emergence times. However, those differences were not reflected in the ability of the different fractions to grow and perform well in terms of growth, or in the ability to overcome infection with bacteria, which was similar for all the emergence fractions. This suggests that discriminating fish according to emergence time would probably have little effect in improving the performance and the welfare of farmed fish.


Subject(s)
Disease Resistance , Feeding Behavior/physiology , Oncorhynchus mykiss/growth & development , Stress, Physiological , Animals , Aquaculture , Blood Glucose , Female , Fish Diseases/microbiology , Flavobacteriaceae Infections/physiopathology , Flavobacteriaceae Infections/veterinary , Flavobacterium/physiology , Hydrocortisone/blood , Lactic Acid/blood , Larva/physiology , Male , Oncorhynchus mykiss/physiology
4.
Fish Shellfish Immunol ; 72: 418-425, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29146445

ABSTRACT

Circadian rhythm is emerging as an important regulator of immune functions. However, there is a paucity of information on the influence of this biological phenomenon in the antimicrobial factors in teleost fish. This study investigated the dynamics and interplay of serum-mediated bacterial killing activity and immune defence factors throughout the light:dark (LD) cycle in rainbow trout (Oncorhynchus mykiss). The juvenile fish came from two different emergence time fractions (i.e., late and early) that were believed to exhibit behavioural and physiological differences. Serum collected during the day from fish (mean ± SD: 39.8 ± 6.3 g) reared under 14L:10D photoperiod demonstrated bactericidal activity against Flavobacterium psychrophilum, Yersinia ruckeri and Aeromonas salmonicida subsp. salmonicida of varying magnitude, but no significant differences between the emergence fractions were observed. A day-night comparison in the same batch of fish revealed time-of-day dependence in the bactericidal activity against F. psychrophilum and Y. ruckeri amongst emergence fractions. A group of fish (63.3 ± 4.7 g) from each fraction was entrained to 12L:12D photoperiod for 21 days to investigate whether serum bactericidal activity exhibited daily rhythm. Serum-mediated bacterial killing activity against F. psychrophilum and Y. ruckeri displayed significant daily rhythm in both emergence fractions, where the peak of activity was identified during the light phase. Moreover, several serum defence factors manifested variations during the LD cycle, where anti-protease (ANTI) and myeloperoxidase (MPO) activities exhibited significant daily oscillation. However, there were no remarkable differences in the daily changes of serum factors amongst emergence fractions. Acrophase analysis revealed that the peaks of activity of alkaline phosphatase (only in late fraction), ANTI, lysozyme (only in early fraction) and MPO were identified during the light phase and corresponded with the period when serum-mediated bacterial killing activity was also at its highest. The daily dynamics of bactericidal activity and immune defence factors displayed positive correlation, particularly between MPO and, the two pathogens (i.e., F. pyschrophilum and Y. ruckeri). Taken together, the study revealed that serum-mediated bacterial killing activity and immune defence factors remarkably varied during the LD cycle in rainbow trout. In addition, the two emergence fractions displayed nearly comparable immunological profiles.


Subject(s)
Circadian Rhythm , Fish Diseases/immunology , Immunity, Humoral , Immunologic Factors/blood , Oncorhynchus mykiss/physiology , Aeromonas salmonicida/physiology , Animals , Flavobacteriaceae Infections/immunology , Flavobacterium/physiology , Gram-Negative Bacterial Infections/immunology , Oncorhynchus mykiss/immunology , Yersinia Infections/immunology , Yersinia ruckeri/physiology
5.
Front Neurosci ; 11: 319, 2017.
Article in English | MEDLINE | ID: mdl-28638317

ABSTRACT

In wild salmonid fish, specific individual behavioral traits have been correlated with the timing of fry emergence from their gravel spawning nests; Early emerging fish display more aggressive behavior and have a higher probability of becoming socially dominant, compared to fish that emerge at a later stage. Apart from aggression and dominance, other behavioral and metabolic traits, such as boldness, metabolic rate, or growth, have also been linked to emergence time. Altogether, the traits of early- and late-emerging fish resemble those of the proactive and reactive stress-coping style, respectively. As proactive fish are considered more resilient to stress, it may be desirable to select these for aquaculture production. However, it is currently unclear to what extent the link between emergence time and stress-coping styles is maintained in the selective breeding of farmed fish. In the present study, eyed eggs from a commercial supplier were hatched, and larvae fractionated according to their emergence time. Later on, juvenile fish from different emergence fractions were subjected to a stress challenge and also tested to evaluate their competitive ability for food. Beyond some slight dissimilarities in the acute stress responses, emergence fraction displayed no correlation with growth rates, or the ability to compete for feed. Within the whole group of fish utilized in the experiments, no relationship between skin melanin spot pattern and growth performance, stress response intensity, or competitive ability was found. Altogether, the differences in physiological traits related to emergence time were not as strong as those found in earlier studies. It is hypothesized, that the origin and degree of domestication of the fish might be partly responsible for this. The predictive value of skin spots or emergence time to infer the fish stress coping style in farmed fish is also discussed.

6.
J Proteomics ; 75(8): 2342-51, 2012 Apr 18.
Article in English | MEDLINE | ID: mdl-22370164

ABSTRACT

Adaptation to hypoxia is a complex process, and individual proteins will be up- or down-regulated in order to address the main challenges at any given time. To investigate the dynamics of the adaptation, rainbow trout (Oncorhynchus mykiss) was exposed to 30% of normal oxygen tension for 1, 2, 5 and 24 h respectively, after which muscle samples were taken. The successful investigation of numerous proteins in a single study was achieved by selectively separating the sarcoplasmic proteins using 2-DE. In total 46 protein spots were identified as changing in abundance in response to hypoxia using one-way ANOVA and multivariate data analysis. Proteins of interest were subsequently identified by MS/MS following tryptic digestion. The observed regulation following hypoxia in skeletal muscle was determined to be time specific, as only a limited number of proteins were regulated in response to more than one time point. The cellular response to hypoxia included regulation of proteins involved in maintaining iron homeostasis, energy levels and muscle structure. In conclusion, this proteome-based study presents a comprehensive investigation of the expression profiles of numerous proteins at four different time points. This increases our understanding of timed changes in protein expression in rainbow trout muscle following hypoxia.


Subject(s)
Hypoxia/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Oncorhynchus mykiss/metabolism , Animals , Cluster Analysis , Electrophoresis, Gel, Two-Dimensional , Energy Metabolism/physiology , Homeostasis/physiology , Hypoxia/pathology , Iron/metabolism , Metabolome/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/physiology , Oncorhynchus mykiss/physiology , Oxygen/pharmacology , Random Allocation , Tandem Mass Spectrometry , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL