Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22278212

ABSTRACT

Large scale outbreaks of the SARS-CoV-2 Delta variant have occurred in numerous settings, including universities. An outbreak of the SARS-CoV-2 Delta AY.25 lineage associated with a university campus with multiple transmission events was identified; genomic analyses characterized this outbreak and complemented contract tracing and wastewater surveillance strategies that strengthened overall public health response actions. Epidemiologic and clinical data routinely gathered through contact tracing and public health investigations were matched to genomic sequencing of SARS-CoV-2 positive samples belonging to a suspect cluster identified through ongoing phylogenomic analyses. Continued phylogenetic analyses were conducted to describe the AY.25 outbreak. Wastewater collected twice weekly from sites across campus was tested for SARS-CoV-2 by RT-qPCR, and subsequently sequenced to identify variants. The AY.25 outbreak was defined by a single mutation (C18804T) and comprised 379 genomes from SARS-CoV-2 positive cases associated with the university and community. Several undergraduate student gatherings and congregate living settings on campus likely contributed to the rapid spread of COVID-19 across the university with secondary transmission into the community. The clade defining mutation was also found in wastewater samples collected from around student dormitories during "move-in", a week before the semester began, and 9 days before cases were identified. Genomic, epidemiologic, and wastewater surveillance provided evidence that an AY.25 clone was likely imported into the university setting just prior to the onset of the Fall 2021 semester, rapidly spread through a subset of the student population, and then subsequent spillover occurred in the surrounding community. The university and local public health department worked closely together to facilitate timely reporting of cases, identification of close contacts, and other necessary response and mitigation strategies. The emergence of new SARS-CoV-2 variants and potential threat of other infectious disease outbreaks on university campuses presents an opportunity for future comprehensive One Health genomic data driven, targeted interventions.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20095935

ABSTRACT

In December of 2019, a novel coronavirus, SARS-CoV-2, emerged in the city of Wuhan, China causing severe morbidity and mortality. Since then, the virus has swept across the globe causing millions of confirmed infections and hundreds of thousands of deaths. To better understand the nature of the pandemic and the introduction and spread of the virus in Arizona, we sequenced viral genomes from clinical samples tested at the TGen North Clinical Laboratory, provided to us by the Arizona Department of Health Services, and at Arizona State University and the University of Arizona, collected as part of community surveillance projects. Phylogenetic analysis of 79 genomes we generated from across Arizona revealed a minimum of 9 distinct introductions throughout February and March. We show that >80% of our sequences descend from clades that were initially circulating widely in Europe but have since dominated the outbreak in the United States. In addition, we show that the first reported case of community transmission in Arizona descended from the Washington state outbreak that was discovered in late February. Notably, none of the observed transmission clusters are epidemiologically linked to the original travel-related cases in the state, suggesting successful early isolation and quarantine. Finally, we use molecular clock analyses to demonstrate a lack of identifiable, widespread cryptic transmission in Arizona prior to the middle of February 2020.

SELECTION OF CITATIONS
SEARCH DETAIL
...